

    
      
          
            
  
Dataverse 4.10 Guides

These guides are for the 4.10 version of Dataverse. To find guides belonging to previous versions, Dataverse Guides Versions has a list of all available versions.



	User Guide
	Account Creation + Management

	Finding and Using Data

	Dataverse Management

	Dataset + File Management

	Tabular Data File Ingest

	Data Exploration Guide

	Appendix





	Admin Guide
	Dashboard

	Managing Harvesting Clients

	Managing Harvesting Server and Sets

	Metadata Customization

	Metadata Export

	Dataverse Application Timers

	Integrations

	Geoconnect and WorldMap

	User Administration

	Managing Datasets and Dataverses

	Solr Search Index

	IP Groups

	Monitoring

	Reporting Tools

	Maintenance

	Backups

	Troubleshooting





	API Guide
	Introduction

	SWORD API

	Search API

	Data Access API

	Native API

	Metrics API

	Client Libraries

	Apps





	Installation Guide
	Introduction

	Preparation

	Prerequisites

	Installation

	Configuration

	Upgrading

	TwoRavens

	Geoconnect

	Shibboleth

	OAuth Login: ORCID, GitHub, Google

	External Tools

	Advanced Installation





	Developer Guide
	Introduction

	Development Environment

	Windows Development

	Tips

	Troubleshooting

	Version Control

	SQL Upgrade Scripts

	Testing

	Documentation

	Dependency Management

	Debugging

	Coding Style

	Deployment

	Docker, Kubernetes, and OpenShift

	Making Releases

	Tools

	Universal Numerical Fingerprint (UNF)

	Shibboleth and OAuth

	Geospatial Data

	SELinux

	Big Data Support





	Style Guide
	Foundations

	Patterns












How the Guides Are Organized

The Guides are reference documents that explain how to use Dataverse,
which are divided into the following sections: User Guide,
Installation Guide, Developer Guide, and API Guide. The User Guide is further divided into primary activities: finding & using
data, adding Datasets, administering dataverses or Datasets, and Dataset exploration/visualizations. Details
on all of the above tasks can be found in the Users Guide. The
Installation Guide is for people or organizations who want to host their
own Dataverse. The Developer Guide contains instructions for
people who want to contribute to the Open Source Dataverse
project or who want to modify the code to suit their own needs. Finally, the API Guide is for
Developers that work on other applications and are interested in connecting with Dataverse through our APIs.




Other Resources

Dataverse Project Site

Additional information about the Dataverse Project itself
including presentations, information about upcoming releases, data
management and citation, and announcements can be found at
http://dataverse.org/

User Group

As the user community grows we encourage people to shares ideas, ask
questions, or offer suggestions for improvement. Go to
https://groups.google.com/group/dataverse-community to register to our dataverse community group.

Follow Us on Twitter

For up to date news, information and developments, follow our twitter account: https://twitter.com/dataverseorg

Support

We maintain an email based support service that’s free of charge. We
attempt to respond within one business day to all questions and if it
cannot be resolved immediately, we’ll let you know what to expect.

The support email address is
support@dataverse.org.

This is the same address as the Report Issue link. We try to respond
within one business day.




Indices and tables


	Index


	Module Index


	Search Page








          

      

      

    





  

    
      
          
            
  
User Guide

Contents:



	Account Creation + Management
	Account Information
	Account Log In Options

	Create Account

	Edit Account

	Convert Account

	Reset Account Password





	Remote Authentication
	Institutional Log In
	Create a Dataverse account using Institutional Log In

	Convert your Dataverse account to use your Institutional Log In

	Convert your Dataverse account away from your Institutional Log In





	ORCID Log In
	Create a Dataverse account using ORCID

	Convert your Dataverse account to use ORCID for log in

	Convert your Dataverse account away from ORCID for log in





	GitHub and Google Log In





	My Data

	Notifications

	API Token





	Finding and Using Data
	Finding Data
	Basic Search
	Sorting and Viewing Search Results





	Advanced Search

	Browsing Dataverse

	Saved Search





	Using Data
	View Dataverses + Datasets

	View Files

	Cite Data

	Download Files
	Tabular Data

	Downloading via URL

	Downloading a Dataverse Package via URL

	Downloading a Dataverse Package via rsync





	Explore Data









	Dataverse Management
	Create a Dataverse (Within the “Root” Dataverse)

	Edit Dataverse

	General Information

	Theme

	Widgets
	Dataverse Search Box Widget

	Dataverse Listing Widget

	Adding Widgets to an OpenScholar Website





	Roles & Permissions
	Setting Access Configurations

	Assigning Roles to Users and Groups





	Dataset Templates

	Dataset Guestbooks

	Featured Dataverses

	Dataset Linking

	Dataverse Linking

	Publish Your Dataverse





	Dataset + File Management
	Supported Metadata

	Adding a New Dataset
	Supported HTML Fields





	File Upload
	HTTP Upload

	Dropbox Upload

	rsync + SSH Upload
	File Upload Script





	Command-line DVUploader
	Usage









	File Handling
	Tabular Data Files

	Geospatial

	Astronomy (FITS)

	Compressed Files

	Other File Types





	Edit Files
	Edit File Metadata

	File Tags





	Replace Files

	Terms
	CC0 Public Domain Dedication

	Custom Terms of Use for Datasets

	Restricted Files + Terms of Access

	Guestbook





	Roles & Permissions
	Dataset-Level

	File-Level





	Data Provenance

	Thumbnails + Widgets
	Thumbnails

	Widgets
	Dataset Widget

	Dataset Citation Widget

	Adding Widgets to an OpenScholar Website









	Publish Dataset

	Submit for Review

	Private URL to Review Unpublished Dataset

	Dataset Versions
	Version Details





	Cloud Storage + Computing
	Cloud Computing

	Cloud Storage Access





	Dataset Deaccession





	Tabular Data File Ingest
	Supported File Formats

	Tabular Data, Representation, Storage and Ingest
	What Happens During this “Ingest”?

	Tabular Data and Metadata
	Data vs. Metadata

	Tabular Metadata in Dataverse









	SPSS
	Supported Versions

	Limitations

	SPSS Control Cards - not supported

	Support for Language Encodings in SPSS





	Stata

	R Data Format
	Overview.

	Data Formatting Requirements.

	Data Types, compared to other supported formats (Stat, SPSS)
	Integers, Doubles, Character strings

	R Factors

	Boolean values

	Limitations of R, as compared to SPSS and STATA.





	Time values in R





	Excel

	CSV/TSV
	Ingest of Comma-Separated Values and Tab-Separated Values files as tabular data.

	Main formatting requirements

	Limitations

	Recognized data types and formatting









	Data Exploration Guide
	TwoRavens: Tabular Data Exploration
	Exploring and Analyzing Tabular files in Dataverse

	Selection/Left Panel
	Original Data and Subset Data

	Variables, Models, and Summary





	Modeling/Center Panel

	Results/Right Panel
	Subset

	Set Covariates





	Additional Buttons
	Estimate

	Force

	Reset









	WorldMap: Geospatial Data Exploration
	Dataverse and WorldMap

	What is Geoconnect?

	Mapping shapefiles with Geoconnect

	Mapping tabular files with Geoconnect
	Preparing a tabular file to be mapped

	Creating the map





	Finalizing your map

	Removing your map









	Appendix
	Metadata References













          

      

      

    





  

    
      
          
            
  
Account Creation + Management


Contents:


	Account Information


	Account Log In Options


	Create Account


	Edit Account


	Convert Account


	Reset Account Password






	Remote Authentication


	Institutional Log In


	Create a Dataverse account using Institutional Log In


	Convert your Dataverse account to use your Institutional Log In


	Convert your Dataverse account away from your Institutional Log In






	ORCID Log In


	Create a Dataverse account using ORCID


	Convert your Dataverse account to use ORCID for log in


	Convert your Dataverse account away from ORCID for log in






	GitHub and Google Log In






	My Data


	Notifications


	API Token







Account Information

As a registered user, you can:


	Create your own dataverse, if permitted, and customize it.


	Add datasets to dataverses, if permitted.


	Contribute to existing datasets, if permitted.


	Request access to restricted files, if permitted.





Account Log In Options

Dataverse has been configured for one or more of the following log in options:


	Username/Email and Password


	Institutional Log In


	ORCID


	GitHub


	Google




Please note that once you create your Dataverse account, it will be associated with only one of the log in options above.

The Institutional Log In, ORCID, GitHub, and Google options are described in more detail below under “Remote Authentication.”




Create Account

To create a Dataverse account with the Username/Email log in option, use the “Sign Up” page. Fill out the fields, and then click the ‘Create Account’ button. Please note that the Username field does not support email addresses but will allow the following characters: a-Z, 0-9, _ (underscores), - (hyphens), and . (periods).

To create a Dataverse account associated with the log in option for your institution, ORCID, GitHub, or Google, use the “Log In” page and select one of the authentication providers. See the “Remote Authentication” section below for details.




Edit Account


	To edit your account after you have logged in, click on your account name in the header on the right hand side and click on Account Information.


	On the top right of your account page, click on the “Edit Account” button and from there you can select to edit either your Account Information or your Account Password.


	Select “Save Changes” when you are done.




Please note that you cannot edit your account information within Dataverse if you use the Institutional Log In option. Instead, you should contact your institution to change your name, email, etc. Once the change is made by your institution, it will be reflected in Dataverse the next time you log in. Users of the Institutional Log In option are not required to verify their email address because the institution providing the email address is trusted.




Convert Account

If more than one log in option is available, you can convert from one to another and use the new option from now on.

If you are converting from the Email/Username log in option you will need to have your password ready to complete the conversion process. Click Log In, select the new log in option, and go through the log in process. When you return to Dataverse, look for an option allowing you to convert and enter your password to complete the conversion. The section on Remote Authentication below has more specific information on converting to Institutional Log In, ORCID, GitHub, and Google.

If you need to perform any other conversion (i.e. from Google to GitHub), use the Support link at the top of the page for assistance.




Reset Account Password

Only Dataverse accounts using the Username/Email log in option have an associated password stored (securely!) in Dataverse. If you cannot remember this password, click on Log In in the top right corner of any page and click the “Forgot Password?” link below where you would enter your username/email and password. Enter your email address and click “Submit Password Request” to receive an email with a link to reset your password.

Please note that if you have forgotten your username, you can use this same process to receive your username in an email.






Remote Authentication

Too many passwords? You can set up your Dataverse account to use log in credentials from one of the following remote authentication providers. This way, you can log in using your existing credentials from another service.


Institutional Log In

Institutional log in allows you to use your log in information for your university (e.g. HarvardKey at Harvard) to log in to your Dataverse account.


Create a Dataverse account using Institutional Log In


	Go to “Log In” in the upper right corner of Dataverse.


	Select the “Your Institution” button under the “Other options” header


	Using the dropdown menu, select your institution then click the Continue button to go to your institution’s log in page.


	After you put in your institutional credentials successfully, you will be brought back to Dataverse to confirm your account information, and click “Create Account”.


	A username has been selected for you. You won’t use this username to log in but it will appear next to your name when other users search for you to assign permissions within the system. To see what you username is, click on your name in the top right corner and click Account Information.




If you do not find your institution listed, you will need to request that it is added to the Research & Scholarship category of InCommon. Contact support for assistance on how to get this process started with the identity provider support team at your institution.




Convert your Dataverse account to use your Institutional Log In

If you already have a Dataverse account associated with the Username/Email log in option, but you want to convert it to use your institutional log in, you can easily do so as long as your account uses an email address from that institution.


	Go to the Account Information page to confirm that your account email address is the same as your institutional email address. If not, you will need to update your Dataverse account to make them match.


	Log out of Dataverse.


	Go to “Log In” in the upper right corner of Dataverse.


	Select the “Your Institution” button under the “Other options” header.


	Using the dropdown menu, select your institution then click the Continue button to go to your institution’s log in page.


	After you put in your institutional credentials successfully, you will be brought back to Dataverse to confirm your account information.


	Enter your current password for your Dataverse account and click “Convert Account”.


	Now you have finished converting your Dataverse account to use your institutional log in.







Convert your Dataverse account away from your Institutional Log In

If you are leaving your institution and need to convert your Dataverse account to the Dataverse Username/Email log in option, you will need to contact support for the Dataverse installation you are using. On your account page, there is a link that will open a popup form to contact support for assistance.






ORCID Log In

You can set up your Dataverse account to allow you to log in using your ORCID credentials. ORCID® is an independent non-profit effort to provide an open registry of unique researcher identifiers and open services to link research activities and organizations to these identifiers. Learn more at orcid.org [http://orcid.org].


Create a Dataverse account using ORCID


	Go to “Log In” in the upper right corner of Dataverse.


	Click the “ORCID” button under the “Other options” header.


	Click the “Log In with ORCID” button to go to the ORCID website.


	If you do not already have an ORCID account, you can create one on this page. If you already have an ORCID account, click on “Sign in” and then enter your login under the “Personal account” tab.


	After you put in your ORCID credentials successfully, you will be brought back to Dataverse to confirm the creation of your Dataverse account. If your ORCID account’s privacy settings permit it, the email address you’ve linked to your ORCID account will be suggested to you as an option. You can use this email if you like, or you can use any other email you might wish. If you have entered employment information within your ORCID account, the name of your employer will be suggested for the “Affiliation” field.







Convert your Dataverse account to use ORCID for log in

If you already have a Dataverse account associated with the Username/Email log in option, but you want to convert it to use ORCID for log in, follow these steps:


	Log out of Dataverse.


	Go to “Log In” in the upper right corner of Dataverse.


	Click the “ORCID” button under the “Other options” header.


	Click the “Log In with ORCID” button to go to the ORCID website.


	If you do not already have an ORCID account, you can create one on this page. If you already have an ORCID account, click on “Sign in” and then enter your login under the “Personal account” tab.


	After you put in your ORCID credentials successfully, you will be brought back to Dataverse. Click the “convert your account” link.


	Enter your username and password for your Dataverse account and click “Convert Account”.


	Now you have finished converting your Dataverse account to use ORCID for log in.







Convert your Dataverse account away from ORCID for log in

If you don’t want to log in to Dataverse using ORCID any more, you will want to convert your Dataverse account to the Dataverse Username/Email log in option. To do this, you will need to contact support for the Dataverse installation you are using. On your account page, there is a link that will open a popup form to contact support for assistance.






GitHub and Google Log In

You can also convert your Dataverse account to use authentication provided by GitHub or Google. These options may be found in the “Other options” section of the log in page, and function similarly to how ORCID is outlined above. If you would like to convert your account away from using one of these services for log in, then you can follow the same steps as listed above for converting away from the ORCID log in.






My Data

The My Data section of your account page displays a listing of all the dataverses, datasets, and files you have either created, uploaded or that you have access to edit. You are able to filter through all the dataverses, datasets, and files listed there using the filter box. You may also use the facets on the left side to only view a specific Publication Status or Role.




Notifications

Notifications appear in the notifications tab on your account page and are also displayed as a number next to your account name.

You will receive a notification when:


	You’ve created your account


	You’ve created a dataverse or added a dataset


	Another Dataverse user has requested access to a restricted file in one of your datasets




Notifications will only be emailed one time even if you haven’t read the notification on the Dataverse site.




API Token


	To create your API token, click on your name in the header on the right hand side and then click on API Token.


	In this tab, you can create your API Token for the first time as well as recreate it if you need a new API Token or if your API Token becomes compromised.










          

      

      

    





  

    
      
          
            
  
Finding and Using Data


Contents:


	Finding Data


	Basic Search


	Sorting and Viewing Search Results






	Advanced Search


	Browsing Dataverse


	Saved Search






	Using Data


	View Dataverses + Datasets


	View Files


	Cite Data


	Download Files


	Tabular Data


	Downloading via URL


	Downloading a Dataverse Package via URL


	Downloading a Dataverse Package via rsync






	Explore Data











Finding Data

Without logging in to Dataverse, users can browse Dataverse, search for dataverses, datasets, and files, view dataset descriptions and files for
published datasets, and subset, analyze, and visualize data for published (restricted & not restricted) data files. To view an unpublished dataverse, dataset, or file, a user will need to be given permission from that dataverse’s administrator to access it.

A user can search within a specific dataverse for the dataverses, datasets, and files it contains by using the search bar and facets displayed on that dataverse’s page.


Basic Search

You can search the entire contents of the Dataverse installation, including dataverses, datasets, and files. You can access the search through the search bar on the homepage, or by clicking the magnifying glass icon in the header of every page. The search bar accepts search terms, queries, or exact phrases (in quotations).


Sorting and Viewing Search Results


	Facets: to the left of the search results, there are several facets a user can click on to narrow the number of results displayed.

	
	Choosing a facet: to choose a facet to narrow your results by, click on that facet.


	Removing a facet: A chosen facet can be removed by clicking on the X on it, either in the facets panel to the left, or above the results.


	Viewing more or fewer facets: Each category in the facets panel lists the top 5 most common facets from that category. To view more, click on “More…” in the bottom right of that category. Once you’ve chosen to see more, an option to view less will appear in the bottom left of the facet.






	Result cards: after entering a search term or query, result cards that match your term or query appear underneath the search bar and to the right of the facets.

	
	Relevancy of results: each result card shows which metadata fields match the search query or term you entered into the search bar, with the matching term or query bolded. If the search term or query was found in the title or name of the dataverse, dataset, or file, the search term or query will be bolded within it.






	Other basic search features:

	
	Sorting results: search results can be sorted by name (A-Z or Z-A), by date (newest or oldest), or by relevancy of results. The sort button can be found above the search results, in the top right.


	Bookmarkable URLs: search URLs can be copied and sent to a fellow researcher, or can be bookmarked for future sessions.













Advanced Search

To perform an advanced search, click the “Advanced Search” link next to the search bar. There you will have the ability to
enter search terms for dataverses, dataset metadata (citation and domain-specific), and file-level
metadata. If you are searching for tabular data files you can also search at the variable level for name and label. To find
out more about what each field searches, hover over the field name for a detailed description of the field.




Browsing Dataverse

In Dataverse, browsing is the default view when a user hasn’t begun a search on the homepage or on a specific dataverse’s page.  When browsing, only dataverses and datasets appear in the results list and the results can be sorted by Name (A-Z or Z-A) and by Newest or Oldest.




Saved Search

Saved Search is currently an experimental feature only available to superusers. Please see the Native API section of the API Guide for more information.






Using Data


View Dataverses + Datasets

After performing a search and finding the dataverse or dataset you are looking for, click on the name of the dataverse or dataset or on the thumbnail image to be taken to the page for that dataverse or dataset. Once on a dataverse page, you can view the dataverses, datasets, and files within that dataverse.

Once on a dataset page, you will see the title, citation, description, and several other fields, as well as a button to email the dataset contact and a button to share the dataset on social media. Below that information, the files, metadata, terms of use, and version information for the dataset are available.




View Files

Files in Dataverse each have their own page that can be reached through the search results or through the Files table on their parent dataset’s page. The dataset page and file page offer much the same functionality in terms of viewing and editing files, with a few small exceptions. The file page includes the file’s persistent identifier (DOI or handle), which can be found under the Metadata tab. Also, the file page’s Versions tab gives you a version history that is more focused on the individual file rather than the dataset as a whole.




Cite Data

You can find the citation for the dataset at the top of the dataset page in a blue box. Additionally, there is a Cite Data button that offers the option to download the citation as EndNote XML, RIS Format, or BibTeX Format.




Download Files

Within the Files tab on a dataset page, you can download the files in that dataset. To download more than one file at a time, select the files you would like to download and then click the Download button above the files. The selected files will download in zip format.

You may also download a file from its file page by clicking the Download button in the upper right corner of the page, or by Downloading via URL under the Metadata tab on the lower half of the page.

Tabular data files offer additional options: You can explore using any data exploration or visualization External Tools (if they have been enabled) by clicking the Explore button, or choose from a number of tabular-data-specific download options available as a dropdown under the Download button.


Tabular Data

Ingested files can be downloaded in several different ways.


	The default option is to download a tab-separated-value file which is an easy and free standard to use.


	The original file, which may be in a proprietary format which requires special software


	Rdata format if the instalation has configured this


	The variable metadata for the file in DDI format


	A subset of the columns of the data







Downloading via URL

Dataverse displays a plaintext URL for the location of the file under the Metadata tab on the dataset page. This Download URL can be used to directly access the file via API (or in a web browser, if needed). When downloading larger files, in order to ensure a reliable, resumable download, we recommend using GNU Wget [https://www.gnu.org/software/wget/] in a command line terminal or using a download manager software of your choice.

Certain files do not provide Download URLs for technical reasons: those that are restricted, have terms of use associated with them, or are part of a dataverse with a guestbook enabled.




Downloading a Dataverse Package via URL

Dataverse Packages are typically used to represent extremely large files or bundles containing a large number of files. Dataverse Packages are often too large to be reliably downloaded using a web browser. When you click to download a Dataverse Package, instead of automatically initiating the download in your web browser, Dataverse displays a plaintext URL for the location of the file. To ensure a reliable, resumable download, we recommend using GNU Wget [https://www.gnu.org/software/wget/] in a command line terminal or using a download manager software of your choice. If you try to simply paste the URL into your web browser then the download may overwhelm your browser, resulting in an interrupted, timed out, or otherwise failed download.




Downloading a Dataverse Package via rsync

rsync is typically used for synchronizing files and directories between two different systems. Some Dataverse installations allow downloads using rsync, to facilitate large file transfers in a reliable and secure manner.

rsync-enabled Dataverse installations offer a new file download process that differs from traditional browser-based downloading. Instead of multiple files, each dataset uploaded via rsync contains a single “Dataverse Package”. When you download this package you will receive a folder that contains all files from the dataset, arranged in the exact folder structure in which they were originally uploaded.

In a dataset containing a Dataverse Package, at the bottom of the dataset page, under the Data Access tab, instead of a download button you will find the information you need in order to download the Dataverse Package using rsync. If the data is locally available to you (on a shared drive, for example) then you can find it at the folder path under Local Access. Otherwise, to download the Dataverse Package you will have to use one of the rsync commands under Download Access. There may be multiple commands listed, each corresponding to a different mirror that hosts the Dataverse Package. Go outside your browser and open a terminal (AKA command line) window on your computer. Use the terminal to run the command that corresponds with the mirror of your choice. It’s usually best to choose the mirror that is geographically closest to you. Running this command will initiate the download process.

After you’ve downloaded the Dataverse Package, you may want to double-check that your download went perfectly. Under Verify Data, you’ll find a command that you can run in your terminal that will initiate a checksum to ensure that the data you downloaded matches the data in Dataverse precisely. This way, you can ensure the integrity of the data you’re working with.






Explore Data

Please see the Data Exploration Guide.









          

      

      

    





  

    
      
          
            
  
Dataverse Management

A dataverse is a container for datasets (research data, code, documentation, and metadata) and other dataverses, which can be setup for individual researchers, departments, journals and organizations.

[image: image1]

Once a user creates a dataverse they, by default, become the
administrator of that dataverse. The dataverse administrator has access
to manage the settings described in this guide.


Contents:


	Create a Dataverse (Within the “Root” Dataverse)


	Edit Dataverse


	General Information


	Theme


	Widgets


	Dataverse Search Box Widget


	Dataverse Listing Widget


	Adding Widgets to an OpenScholar Website






	Roles & Permissions


	Setting Access Configurations


	Assigning Roles to Users and Groups






	Dataset Templates


	Dataset Guestbooks


	Featured Dataverses


	Dataset Linking


	Dataverse Linking


	Publish Your Dataverse







Create a Dataverse (Within the “Root” Dataverse)

Creating a dataverse is easy but first you must be a registered user (see Account Creation + Management).


	Once you are logged in click on the “Add Data” button and in the dropdown menu select “New Dataverse”.


	
	Once on the “New Dataverse” page fill in the following fields:

	
	Name: Enter the name of your dataverse.


	Identifier: This is an abbreviation, usually lower-case, that becomes part of the URL for the new dataverse. Special characters (~,`, !, @, #, $, %, ^, &, and *) and spaces are not allowed. Note: if you change the Dataverse URL field, the URL for your Dataverse changes (http//…/’url’), which affects links to this page.


	Email: This is the email address that will be used as the contact for this particular dataverse. You can have more than one contact email address for your dataverse.


	Affiliation: Add any Affiliation that can be associated to this particular dataverse (e.g., project name, institute name, department name, journal name, etc). This is automatically filled out if you have added an affiliation for your user account.


	Description: Provide a description of this dataverse. This will display on the home page of your dataverse and in the search result list. The description field supports certain HTML tags (<a>, <b>, <blockquote>, <br>, <code>, <del>, <dd>, <dl>, <dt>, <em>, <hr>, <h1>-<h3>, <i>, <img>, <kbd>, <li>, <ol>, <p>, <pre>, <s>, <sup>, <sub>, <strong>, <strike>, <ul>).


	Category: Select a category that best describes the type of dataverse this will be. For example, if this is a dataverse for an individual researcher’s datasets, select Researcher. If this is a dataverse for an institution, select Organization & Institution.


	Choose the sets of Metadata Elements for datasets in this dataverse: By default the metadata elements will be from the host dataverse that this new dataverse is created in. Dataverse offers metadata standards for multiple domains. To learn more about the metadata standards in Dataverse please check out the Appendix.


	Select facets for this dataverse: by default the facets that will appear on your dataverse landing page will be from the host dataverse that this new dataverse was created in. The facets are simply metadata fields that can be used to help others easily find dataverses and datasets within this dataverse. You can select as many facets as you would like.










	Selected metadata elements are also used to pick which metadata fields you would like to use for creating templates for your datasets. Metadata fields can be hidden, or selected as required or optional. Once you have selected all the fields you would like to use, you can create your template(s) after you finish creating your dataverse.


	Click “Create Dataverse” button and you’re done!




*Required fields are denoted by a red asterisk.




Edit Dataverse

To edit your dataverse, navigate to your dataverse homepage and select the “Edit Dataverse” button,
where you will be presented with the following editing options:


	General Information: edit name, identifier, category, contact email, affiliation, description, Metadata Elements, and facets for your dataverse


	Theme: upload a logo for your dataverse, add a link to your department or personal website, and select colors for your dataverse in order to brand it


	Widgets: get code to add to your website to have your dataverse display on it


	Permissions: give Dataverse users permissions to your dataverse, i.e.-can edit datasets, and see which users already have which permissions for your dataverse


	Dataset Templates: these are useful when you have several datasets that have the same information in multiple metadata fields that you would prefer not to have to keep manually typing in


	Dataset Guestbooks: allows you to collect data about who is downloading the files from your datasets


	Featured Dataverses: if you have one or more dataverses, you can use this option to show them at the top of your dataverse page to help others easily find interesting or important dataverses


	Delete Dataverse: you are able to delete your dataverse as long as it is not published and does not have any draft datasets







General Information

The General Information page is how you edit the information you filled in while creating your dataverse. If you need to change or add a contact email address, this is the place to do it. Additionally, you can update the metadata elements used for datasets within the dataverse, change which metadata fields are hidden, required, or optional, and update the facets you would like displayed for browsing the dataverse. If you plan on using templates, you need to select the metadata fields on the General Information page.

Tip: The metadata fields you select as required will appear on the Create Dataset form when someone goes to add a dataset to the dataverse.




Theme

The Theme feature provides you with a way to customize the look of your dataverse. You can decide either to use the theme from the dataverse containing your dataverse (even up to the root dataverse, AKA the homepage), or upload your own image file. Supported image types are JPEG, TIFF, or PNG and should be no larger than 500 KB. The maximum display size for an image file in a dataverse’s theme is 940 pixels wide by 120 pixels high. Additionally, you can select the colors for the header of your dataverse and the text that appears in your dataverse. You can also add a link to your personal website, the website for your organization or institution, your department, journal, etc.




Widgets

The Widgets feature provides you with code for you to put on your personal website to have your dataverse displayed there. There are two types of Widgets for a dataverse, a Dataverse Search Box widget and a Dataverse Listing widget. From the Widgets tab on the Theme + Widgets page, you can copy and paste the code snippets for the widget you would like to add to your website. If you need to adjust the height of the widget on your website, you may do so by editing the heightPx=500 parameter in the code snippet.


Dataverse Search Box Widget

The Dataverse Search Box Widget will add a search box to your website that is linked to your dataverse. Users are directed to your dataverse in a new browser window, to display the results for search terms entered in the input field.




Dataverse Listing Widget

The Dataverse Listing Widget provides a listing of all your dataverses and datasets for users to browse, sort, filter and search. When someone clicks on a dataverse or dataset in the widget, it displays the content in the widget on your website. They can download data files directly from the datasets within the widget. If a file is restricted, they will be directed to your dataverse to log in, instead of logging in through the widget on your website.




Adding Widgets to an OpenScholar Website


	Log in to your OpenScholar website


	Either build a new page or navigate to the page you would like to use to show the Dataverse widgets.


	Click on the Settings Cog and select Layout


	At the top right, select Add New Widget and under Misc. you will see the Dataverse Search Box and the Dataverse Listing Widgets. Click on the widget you would like to add, fill out the form, and then drag it to where you would like it to display in the page.









Roles & Permissions

Dataverse user accounts can be granted roles that define which actions they are allowed to take on specific dataverses, datasets, and/or files. Each role comes with a set of permissions, which define the specific actions that users may take.

Roles and permissions may also be granted to groups. Groups can be defined as a collection of Dataverse user accounts, a collection of IP addresses (e.g. all users of a library’s computers), or a collection of all users who log in using a particular institutional login (e.g. everyone who logs in with a particular university’s account credentials).

Admins of a dataverse can assign roles and permissions to the users of that dataverse. If you are an admin on a dataverse, then you will find the link to the Permissions page under the Edit dropdown on the dataverse page.

[image: image2]

Clicking on Permissions will bring you to this page:

[image: image3]

When you access a dataverse’s permissions page, you will see three sections:

Permissions: Here you can decide the requirements that determine which types of users can add datasets and sub dataverses to your dataverse, and what permissions they’ll be granted when they do so.

Users/Groups: Here you can assign roles to specific users or groups, determining which actions they are permitted to take on your dataverse. You can also reference a list of all users who have roles assigned to them for your dataverse and remove their roles if you please.

Roles: Here you can reference a full list of roles that can be assigned to users of your dataverse. Each role lists the permissions that it offers.

Please note that even on a newly created dataverse, you may see user and groups have already been granted role(s) if your installation has :InheritParentRoleAssignments set. For more on this setting, see the Configuration section of the Installation Guide.


Setting Access Configurations

Under the Permissions tab, you can click the “Edit Access” button to open a box where you can add to your dataverse and what permissions are granted to those who add to your dataverse.

[image: image4]

The first question on this page allows you to determine how open your dataverse is to new additions - you can set whether or not the entire userbase (all logged in users) has the ability to add datasets or sub dataverses to your dataverse.

The second question on this page allows you to choose the role (and thus the permissions) granted to users who add a dataset to your dataverse. The role you select will be automatically granted to any user who creates a dataset on your dataverse, on that dataset, at the moment that he or she creates it. The role the user is given determines his or her permissions for the dataset they’ve created. The key difference between the two roles is that curators can publish their own datasets, while contributors must submit the dataset to be reviewed before publication. Additionally, curators can manage dataset permissions. Note that this setting does not retroactively apply roles to users who have previously added datasets to your dataverse; it only applies to users adding new datasets going forward.

Both of these settings can be changed at any time.




Assigning Roles to Users and Groups

Under the Users/Groups tab, you can add, edit, or remove the roles granted to users and groups on your dataverse. A role is a set of permissions granted to a user or group when they’re using your dataverse. For example, giving your research assistant the “Contributor” role would give her the following self-explanatory permissions on your dataverse and all datasets within your dataverse: “ViewUnpublishedDataset”, “DownloadFile”, “EditDataset”, and “DeleteDatasetDraft”. She would, however, lack the “PublishDataset” permission, and thus would be unable to publish datasets on your dataverse. If you wanted to give her that permission, you would give her a role with that permission, like the Curator role. Users and groups can hold multiple roles at the same time if needed. Roles can be removed at any time. All roles and their associated permissions are listed under the “Roles” tab of the same page.

[image: image5]

Note that the Dataset Creator role and Contributor role are sometimes confused. The Dataset Creator role is assigned at the dataverse level and allows a user to create new datasets in that dataverse. The Contributor role can be assigned at the dataset level, granting a user the ability to edit that specific dataset. Alternatively, the Contributor role can be assigned at the dataverse level, granting the user the ability to edit all datasets in that dataverse.

[image: image6]

Note: If you need to assign a role to ALL Dataverse user accounts, you can assign the role to the “:authenticated-users” group.






Dataset Templates

Templates are useful when you have several datasets that have the same information in multiple metadata fields that you would prefer not to have to keep manually typing in, or if you want to use a custom set of Terms of Use and Access for multiple datasets in a dataverse. In Dataverse 4.0, templates are created at the dataverse level, can be deleted (so it does not show for future datasets), set to default (not required), or can be copied so you do not have to start over when creating a new template with similar metadata from another template. When a template is deleted, it does not impact the datasets that have used the template already.

How do you create a template?


	Navigate to your dataverse, click on the Edit Dataverse button and select Dataset Templates.


	Once you have clicked on Dataset Templates, you will be brought to the Dataset Templates page. On this page, you can 1) decide to use the dataset templates from your parent dataverse 2) create a new dataset template or 3) do both.


	Click on the Create Dataset Template to get started. You will see that the template is the same as the create dataset page with an additional field at the top of the page to add a name for the template.


	After adding information into the metadata fields you have information for and clicking Save and Add Terms, you will be brought to the page where you can add custom Terms of Use and Access. If you do not need custom Terms of Use and Access, click the Save Dataset Template, and only the metadata fields will be saved.


	After clicking Save Dataset Template, you will be brought back to the Manage Dataset Templates page and should see your template listed there now with the make default, edit, view, or delete options.


	A dataverse does not have to have a default template and users can select which template they would like to use while on the Create Dataset page.


	You can also click on the View button on the Manage Dataset Templates page to see what metadata fields have information filled in.




* Please note that the ability to choose which metadata fields are hidden, required, or optional is done on the General Information page for the dataverse.




Dataset Guestbooks

Guestbooks allow you to collect data about who is downloading the files from your datasets. You can decide to collect account information (username, given name & last name, affiliation, etc.) as well as create custom questions (e.g., What do you plan to use this data for?). You are also able to download the data collected from the enabled guestbooks as Excel files to store and use outside of Dataverse.

How do you create a guestbook?


	After creating a dataverse, click on the Edit Dataverse button and select Dataset Guestbook


	By default, guestbooks created in the dataverse your dataverse is in, will appear. If you do not want to use or see those guestbooks, uncheck the checkbox that says Include Guestbooks from Root Dataverse.


	To create a new guestbook, click the Create Dataset Guestbook button on the right side of the page.


	Name the guestbook, determine the account information that you would like to be required (all account information fields show when someone downloads a file), and then add Custom Questions (can be required or not required).


	Hit the Create Dataset Guestbook button once you have finished.




What can you do with a guestbook?
After creating a guestbook, you will notice there are several options for a guestbook and appear in the list of guestbooks.


	If you want to use a guestbook you have created, you will first need to click the button in the Action column that says Enable. Once a guestbook has been enabled, you can go to the License + Terms for a dataset and select a guestbook for it.


	There are also options to view, copy, edit, or delete a guestbook.


	Once someone has downloaded a file in a dataset where a guestbook has been assigned, an option to download collected data will appear.







Featured Dataverses

Featured Dataverses is a way to display sub dataverses in your dataverse that you want to feature for people to easily see when they visit your dataverse.

Click on Featured Dataverses and a pop up will appear. Select which sub dataverses you would like to have appear.

Note: Featured Dataverses can only be used with published dataverses.




Dataset Linking

Dataset linking allows a dataverse owner to “link” their dataverse to a dataset that exists outside of that dataverse, so it appears in the dataverse’s list of contents without actually being in that dataverse. You can link other users’ datasets to your dataverse, but that does not transfer editing or other special permissions to you. The linked dataset will still be under the original user’s control.

For example, researchers working on a collaborative study across institutions can each link their own individual institutional dataverses to the one collaborative dataset, making it easier for interested parties from each institution to find the study.

In order to link a dataset, you will need your account to have the “Add Dataset” permission on the Dataverse that is doing the linking. If you created the dataverse then you should have this permission already, but if not then you will need to ask the admin of that dataverse to assign that permission to your account. You do not need any special permissions on the dataset being linked.

To link a dataset to your dataverse, you must navigate to that dataset and click the white “Link” button in the upper-right corner of the dataset page. This will open up a window where you can type in the name of the dataverse that you would like to link the dataset to. Select your dataverse and click the save button. This will establish the link, and the dataset will now appear under your dataverse.

There is currently no way to remove established links in the UI. If you need to remove a link between a dataverse and a dataset, please contact the support team for the Dataverse installation you are using.




Dataverse Linking

Similarly to dataset linking, dataverse linking allows a dataverse owner to “link” their dataverse to another dataverse, so the dataverse being linked will appear in the linking dataverse’s list of contents without actually being in that dataverse. Currently, the ability to link a dataverse to another dataverse is a superuser only feature.

If you need to have a dataverse linked to your dataverse, please contact the support team for the Dataverse installation you are using.




Publish Your Dataverse

Once your dataverse is ready to go public, go to your dataverse page, click on the “Publish” button on the right
hand side of the page. A pop-up will appear to confirm that you are ready to actually Publish, since once a dataverse
is made public, it can no longer be unpublished.







          

      

      

    





  

    
      
          
            
  
Dataset + File Management

A dataset in Dataverse is a container for your data, documentation, code, and the metadata describing this Dataset.

[image: image1]


Contents:


	Supported Metadata


	Adding a New Dataset


	Supported HTML Fields






	File Upload


	HTTP Upload


	Dropbox Upload


	rsync + SSH Upload


	File Upload Script






	Command-line DVUploader


	Usage










	File Handling


	Tabular Data Files


	Geospatial


	Astronomy (FITS)


	Compressed Files


	Other File Types






	Edit Files


	Edit File Metadata


	File Tags






	Replace Files


	Terms


	CC0 Public Domain Dedication


	Custom Terms of Use for Datasets


	Restricted Files + Terms of Access


	Guestbook






	Roles & Permissions


	Dataset-Level


	File-Level






	Data Provenance


	Thumbnails + Widgets


	Thumbnails


	Widgets


	Dataset Widget


	Dataset Citation Widget


	Adding Widgets to an OpenScholar Website










	Publish Dataset


	Submit for Review


	Private URL to Review Unpublished Dataset


	Dataset Versions


	Version Details






	Cloud Storage + Computing


	Cloud Computing


	Cloud Storage Access






	Dataset Deaccession







Supported Metadata

A dataset contains three levels of metadata:


	Citation Metadata: any metadata that would be needed for generating a data citation and other general metadata that could be applied to any dataset;


	Domain Specific Metadata: with specific support currently for Social Science, Life Science, Geospatial, and Astronomy datasets; and


	File-level Metadata: varies depending on the type of data file - see File Handling and Uploading section below for more details).




For more details about what Citation and Domain Specific Metadata is supported please see our Appendix.

Note that once a dataset has been published its metadata may be exported. A button on the dataset page’s metadata tab will allow a user to export the metadata of the most recently published version of the dataset. Currently supported export formats are DDI, Dublin Core, Schema.org JSON-LD, and Dataverse’s native JSON format.




Adding a New Dataset


	Navigate to the dataverse in which you want to add a dataset.


	Click on the “Add Data” button and select “New Dataset” in the dropdown menu.


	To quickly get started, enter at minimum all the required fields with an asterisk (e.g., the Dataset Title, Author,
Description, Contact Email and Subject) to get a Data Citation with a DOI.


	Scroll down to the “Files” section and click on “Select Files to Add” to add all the relevant files to your Dataset.
You can also upload your files directly from your Dropbox. Tip: You can drag and drop or select multiple files at a time from your desktop
directly into the upload widget. Your files will appear below the “Select Files to Add” button where you can add a
description and tags (via the “Edit Tag” button) for each file. Additionally, an MD5 checksum will be added for each file. If you upload a tabular file a Universal Numerical Fingerprint (UNF) will be added to this file.


	Click the “Save Dataset” button when you are done. Your unpublished dataset is now created.




Note: You can add additional metadata once you have completed the initial dataset creation by going to Edit Dataset > Metadata.


Supported HTML Fields

We currently only support the following HTML tags for any of our textbox metadata fields (i.e., Description) : <a>, <b>, <blockquote>,
<br>, <code>, <del>, <dd>, <dl>, <dt>, <em>, <hr>, <h1>-<h3>, <i>, <img>, <kbd>, <li>, <ol>, <p>, <pre>, <s>, <sup>, <sub>,
<strong>, <strike>, <ul>.






File Upload

The Dataverse software offers multiple methods of uploading files to a dataset. These upload methods are configurable by the administrator of a Dataverse installation, so you might not see some of these options on the Dataverse site you’re using.

If there are multiple upload options available, then you must choose which one to use for your dataset. A dataset may only use one upload method. Once you upload a file using one of the available upload methods, that method is locked in for that dataset. If you need to switch upload methods for a dataset that already contains files, then please contact Support by clicking on the Support link at the top of the application.

You can upload files to a dataset while first creating that dataset. You can also upload files after creating a dataset by clicking the “Edit” button at the top of the dataset page and from the dropdown list selecting “Files (Upload)” or clicking the “Upload Files” button above the files table in the Files tab. From either option you will be brought to the Upload Files page for that dataset.

Certain file types in Dataverse are supported by additional functionality, which can include downloading in different formats, subsets, file-level metadata preservation, file-level data citation; and exploration through data visualization and analysis. See the File Handling section of this page for more information.


HTTP Upload

HTTP Upload is a common browser-based file upload tool you may be familiar with from other web applications. You can upload files via HTTP by selecting them from your browser or dragging and dropping them into the upload widget.

Once you have uploaded files, you will be able to edit file metadata, restrict access to files 1 , and/or add tags. Click “Save Changes” to complete the upload. If you uploaded a file by mistake, you can delete it before saving by clicking the checkbox to select the file, and then clicking the “Delete” button above the Files Table.

File upload limit size varies based on Dataverse installation. The file upload size limit can be found in the text above the HTTP upload widget. If you need to upload a very large file or a very large number of files, consider using rsync + SSH upload if your installation of Dataverse offers it.


	1

	Some Dataverse installations do not allow this feature.








Dropbox Upload

Some Dataverse installations support the ability to upload files directly from Dropbox. To do so, click the “Upload from Dropbox” button, log in to Dropbox in the pop-up window, and select the files you’d like to transfer over.




rsync + SSH Upload

rsync is typically used for synchronizing files and directories between two different systems, using SSH to connect rather than HTTP. Some Dataverse installations allow uploads using rsync, to facilitate large file transfers in a reliable and secure manner.


File Upload Script

An rsync-enabled Dataverse installation has a file upload process that differs from the traditional browser-based upload process you may be used to. In order to transfer your data to Dataverse’s storage, you will need to complete the following steps:


	Create your dataset. In rsync-enabled Dataverse installations, you cannot upload files until the dataset creation process is complete. After you hit “Save Dataset” on the Dataset Creation page, you will be taken to the page for your dataset.


	On the dataset page, click the “+ Upload Files” button. This will open a box with instructions and a link to the file upload script.


	Make sure your files are ready for upload. You will need to have one directory that you can point the upload script to. All files in this directory and in any subdirectories will be uploaded. The directory structure will be preserved, and will be reproduced when your dataset is downloaded from Dataverse. Note that your data will be uploaded in the form of a data package, and each dataset can only host one such package. Be sure that all files you want to include are present before you upload.


	Download the rsync file upload script by clicking the “Download Script” button in the Upload Files instruction box. There are no requirements for where you save the script; put it somewhere you can find it. Downloading the upload script will put a temporary lock on your dataset to prepare it for upload. While your dataset is locked, you will not be able to delete or publish your dataset, or edit its metadata. Once you upload your files and Dataverse processes them, your dataset will be automatically unlocked and these disabled functions will be enabled again. If you have downloaded the script and locked your dataset, but you have then changed your mind and decided not to upload files, please contact Support about unlocking your dataset.


	To begin the upload process, you will need to run the script you downloaded. For this, you will have to go outside your browser and open a terminal (AKA command line) window on your computer. Use the terminal to navigate to the directory where you saved the upload script, and run the command that the Upload Files instruction box provides. This will begin the upload script. Please note that this upload script will expire 7 days after you downloaded it. If it expires and you still need to use it, simply download the script from Dataverse again.




Note: Unlike other operating systems, Windows does not come with rsync supported by default. We have not optimized this feature for Windows users, but you may be able to get it working if you install the right Unix utilities. (If you have found a way to get this feature working for you on Windows, you can contribute it to our project. Please reference our Contributing to Dataverse [https://github.com/IQSS/dataverse/blob/master/CONTRIBUTING.md] document in the root of the source tree.)


	Follow the instructions provided by the upload script running in your terminal. It will direct you to enter the full path of the directory where your dataset files are located, and then it will start the upload process. Once you’ve initiated the upload, if you need to cancel it then you can do so by canceling the script running in your terminal window. If your upload gets interrupted, you can resume it from the same point later.


	Once the upload script completes its job, Dataverse will begin processing your data upload and running a checksum validation. This may take some time depending on the file size of your upload. During processing, you will see a blue bar at the bottom of the dataset page that reads “Upload in progress…”


	Once processing is complete, you will be notified. At this point you can publish your dataset and your data will be available for download on the dataset page.




Note: A dataset can only hold one data package. If you need to replace the data package in your dataset, contact Support.






Command-line DVUploader

The open-source DVUploader tool is a stand-alone command-line Java application that uses the Dataverse API to upload files to a specified Dataset. Since it can be installed by users, and requires no server-side configuration, it can be used with any Dataverse installation. It is intended as an alternative to uploading files through the Dataverse web interface in situations where the web interface is inconvenient due to the number of files or file locations (spread across multiple directories, mixed with files that have already been uploaded or file types that should be excluded) or the need to automate uploads. Since it uses the Dataverse API, transfers are limited in the same ways as HTTP uploads through the Dataverse web interface in terms of size and performance. The DVUploader logs its activity and can be killed and restarted as desired. If stopped and resumed, it will continue processing from where it left off.


Usage

The DVUploader is open source and is available as source, as a Java jar, and with documentation at https://github.com/IQSS/dataverse-uploader. The DVUploader requires Java 1.8+. Users will need to install Java if they don’t already have it and then download the DVUploader-v1.0.0.jar file. Users will need to know the URL of the Dataverse server, the DOI of their existing Dataverse Dataset, and have generated a Dataverse API Key (an option in the user’s profile menu).

Basic usage is to run the command:

java -jar DVUploader-v1.0.0.jar -server=<Dataverse server URL> -did=<Dataset DOI> -key=<User's API Key> <file or directory list>





Additional command line arguments are available to make the DVUploader list what it would do without uploading, limit the number of files it uploads, recurse through sub-directories, verify fixity, exclude files with specific extensions or name patterns, and/or wait longer than 60 seconds for any Dataverse ingest lock to clear (e.g. while the previously uploaded file is processed, as discussed in the File Handling section below).

DVUploader is a community-developed tool, and its creation was primarily supported by the Texas Digital Library. Further information and support for DVUploader can be sought at the project’s GitHub repository [https://github.com/IQSS/dataverse-uploader] .








File Handling

Certain file types in Dataverse are supported by additional functionality, which can include downloading in different formats, subsets, file-level metadata preservation, file-level data citation; and exploration through data visualization and analysis. See the sections below for information about special functionality for specific file types.


Tabular Data Files

Files in certain formats - Stata, SPSS, R, Excel(xlsx) and CSV - may be ingested as tabular data (see “Tabular Data Ingest” section of the User Guide for details). Tabular data files can be further explored and manipulated with TwoRavens - a statistical data exploration application integrated with Dataverse, as well as other External Tools if they have been enabled in the installation of Dataverse you are using. TwoRavens allows the user to run statistical models, view summary statistics, download subsets of variable vectors and more. To start, click on the “Explore” button, found next to each relevant tabular file (the application will be opened in a new window). To download subsets of variables click on the “Download” button found next to a relevant tabular file and select “Data Subset” in the dropdown menu. You will then be able to create your subset using the interface opened in a new window (this functionality is also provided by the TwoRavens project). See the TwoRavens documentation section for more information.

Additional download options available for tabular data (found in the same drop-down menu under the “Download” button):


	As tab-delimited data (with the variable names in the first row);


	The original file uploaded by the user;


	Saved as R data (if the original file was not in R format);


	Variable Metadata (as a DDI Codebook [http://www.ddialliance.org/Specification/DDI-Codebook/] XML file);


	Data File Citation (currently in either RIS or EndNote XML format);


	All of the above, as a zipped bundle.




[image: image2]




Geospatial

Geospatial shapefiles [http://en.wikipedia.org/wiki/Shapefile] can be further explored and manipulated through our integration with WorldMap, a geospatial data visualization and analysis tool developed by the Center for Geographic Analysis [http://gis.harvard.edu/] at Harvard University. A shapefile is a set of files, often uploaded/transferred in .zip format.  This set may contain up to 15 files.  A minimum of 3 specific files (.shp, .shx, .dbf) are needed to be a valid shapefile and a 4th file (.prj) is required for WorldMap–or any type of meaningful visualization.

For ingest into Dataverse and connecting to WorldMap, these 4 files are the minimum required:


	.shp - shape format; the feature geometry itself


	.shx - shape index format; a positional index of the feature geometry to allow seeking forwards and backwards quickly


	.dbf - attribute format; columnar attributes for each shape, in dBase IV format


	.prj - projection format; the coordinate system and projection information, a plain text file describing the projection using well-known text format




For a zipped shapefile, we require 4 files with these extensions. Other files may be included within the zipped shapefile, but they are not required:


	.shp


	.shx


	.prj


	.dbf




For example, if these files were included within a .zip, the “Map Data” button would appear:


	subway_line.shp


	subway_line.shx


	subway_line.prj


	subway_line.dbf




Once you publish your dataset with your shape files, you will be able to use the “Map Data” button using GeoConnect [https://github.com/IQSS/geoconnect] to visualize and manipulate these files for users to Explore this geospatial data using the WorldMap [http://worldmap.harvard.edu/] interface. Please note: In order to map your data file, a copy will be sent to Harvard’s WorldMap [http://worldmap.harvard.edu/] platform. You have the ability to delete any maps, and associated data, from the Harvard WorldMap platform, at any time.




Astronomy (FITS)

Metadata found in the header section of Flexible Image Transport System (FITS) files [http://fits.gsfc.nasa.gov/fits_primer.html] are automatically extracted by Dataverse, aggregated and displayed in the Astronomy Domain-Specific Metadata of the Dataset that the file belongs to. This FITS file metadata, is therefore searchable and browsable (facets) at the Dataset-level.




Compressed Files

Compressed files in zip format are unpacked automatically. If it fails to unpack, for whatever reason, it will upload as is. If the number of files inside are more than a set limit (1,000), you will get an error message and the file will uploads as is.

Support for unpacking tar files will be added when this ticket is closed: https://github.com/IQSS/dataverse/issues/2195.




Other File Types

There are several advanced options available for certain file types.


	Image files: .jpg, .png, and .tif files are able to be selected as the default thumbnail for a dataset. The selected thumbnail will appear on the search result card for that dataset.


	SPSS files: SPSS files can be tagged with the language they were originally coded in. This is found by clicking on Advanced Options and selecting the language from the list provided.









Edit Files


Edit File Metadata

Go to the dataset you would like to edit, where you will see the listing of files. Select the files you would like to edit by using either the Select All checkbox or individually selecting files. Next, click the “Edit Files” button above the file table and from the dropdown menu select if you would like to:


	Delete the selected files


	Edit the file metadata (file name, description) for the selected files


	Restrict the selected files


	Unrestrict the selected files (only if the selected files are restricted)


	Add tags to the selected files




You will not have to leave the dataset page to complete these action, except for editing file metadata, which will bring you to the Edit Files page. There you will have to click the “Save Changes” button to apply your edits and return to the dataset page.

If you restrict files, you will also prompted with a popup asking you to fill out the Terms of Access for the files. If Terms of Access already exist, you will be asked to confirm them. Note that some Dataverse installations do not allow for file restrictions.




File Tags

File tags are comprised of custom, category (i.e. Documentation, Data, Code) and tabular data tags (i.e. Event, Genomics, Geospatial, Network, Panel, Survey, Time Series). Use the dropdown select menus as well as the custom file tag input to apply these tags to the selected files. There is also a Delete Tags feature that, if checked, will allow you to delete unused file tags within that dataset.






Replace Files

In cases where you would like to revise an existing file rather than add a new one, you can do so using our Replace File feature. This will allow you to track the history of this file across versions of your dataset, both before and after replacing it. This could be useful for updating your data or fixing mistakes in your data. Because replacing a file creates an explicit link between the previous dataset version and the current version, the file replace feature is not available for unpublished dataset drafts. Also note that replacing a file will not automatically carry over that file’s metadata, but once the file is replaced then its original metadata can still be found by referencing the previous version of the file under the “Versions” tab of the file page.

To replace a file, go to the file page for that file, click on the “Edit” button, and from the dropdown list select “Replace”. This will bring you to the Replace File page, where you can see the metadata for the most recently published version of the file and you can upload your replacement file. Once you have uploaded the replacement file, you can edit its name, description, and tags. When you’re finished, click the “Save Changes” button.

After successfully replacing a file, a new dataset draft version will be created. A summary of your actions will be recorded in the “Versions” tab on on both the dataset page and file page. The Versions tab allows you to access all previous versions of the file across all previous versions of your dataset, including the old version of the file before you replaced it.




Terms

Dataset terms can be viewed and edited from the Terms tab of the dataset page, or under the Edit dropdown button of a Dataset. There, you can set up how users can use your data once they have downloaded it (CC0 waiver or custom Terms of Use), how they can access your data if you have files that are restricted (terms of access), and enable a Guestbook for your dataset so that you can track who is using your data and for what purposes. These are explained in further detail below:


CC0 Public Domain Dedication

By default, all new datasets created through Dataverse’s web UI are given a Creative Commons CC0 Public Domain Dedication [https://creativecommons.org/publicdomain/zero/1.0/].

The Creative Commons [https://creativecommons.org] organization defines a number of licenses [https://creativecommons.org/licenses/] that allow copyright holders to release their intellectual property more openly, with fewer legal restrictions than standard copyright enforces. Each Creative Commons license typically specifies simple terms for how the IP must be used, reused, shared, and attributed. In addition to these licenses, Creative Commons also provides public domain tools that make it easy to dedicate IP to the public domain.

In the context of Dataverse, their CC0 Public Domain Dedication [https://creativecommons.org/share-your-work/public-domain/cc0] allows you to unambiguously waive all copyright control over your data in all jurisdictions worldwide. Data released with CC0 can be freely copied, modified, and distributed (even for commercial purposes) without violating copyright. In most parts of the world, factual data is exempt from copyright anyway, but applying CC0 removes all ambiguity and makes the legal copyright status of the data as clear as possible. Dataverse applies CC0 to datasets by default because it facilitates reuse, extensibility, and long-term preservation of research data by assuring that the data can be safely handled by anyone without fear of potential copyright pitfalls.

Though CC0 waives a dataset owner’s legal copyright controls over the data, it does not exempt Dataverse users from following ethical and professional norms in scholarly communications. The Dataverse Community Norms [https://dataverse.org/best-practices/dataverse-community-norms] * as well as scientific best practices assert that proper credit should be given via citation. Regardless of whether CC0 has been applied or not, Dataverse users are expected to cite the data they use, giving credit to the data’s authors. This expectation applies to both the Dataverse Community and the entire wider scholarly community.

Additionally, users are still expected to respect access restrictions and other terms applied to CC0 files in Dataverse. Additional restrictions, conditions, and terms can still be compatible with CC0, as CC0 only operates in the realm of copyright, which is rather limited when it comes to data.

If a data owner feels that CC0 is not suitable for their data, they are able to enter custom Terms of Use, as detailed in the following section.

* Legal Disclaimer: these Community Norms [https://dataverse.org/best-practices/dataverse-community-norms] are not a substitute for the CC0 waiver or custom terms and licenses applicable to each dataset. The Community Norms are not a binding contractual agreement, and that downloading datasets from Dataverse does not create a legal obligation to follow these policies.




Custom Terms of Use for Datasets

If you are unable to use the CC0 Public Domain Dedication for your datasets, you may specify your own custom Terms of Use. To do so, select “No, do not apply CC0 - “Public Domain Dedication”, and a Terms of Use text box will show up allowing you to enter your own custom terms of use for your dataset. To add more information about the Terms of Use, we have provided fields like Special Permissions, Restrictions, Citation Requirements, etc.

Here is an example of a Data Usage Agreement [https://dataverse.org/best-practices/sample-dua] for datasets that have de-identified human subject data.




Restricted Files + Terms of Access

If you restrict any files in your dataset, you will be prompted by a pop-up to enter Terms of Access for the data. This can also be edited in the Terms tab or selecting Terms in the “Edit” dropdown button in the dataset. You may also allow users to request access for your restricted files by enabling “Request Access”. To add more information about the Terms of Access, we have provided fields like Data Access Place, Availability Status, Contact for Access, etc.

Note: Some Dataverse installations do not allow for file restriction.




Guestbook

This is where you will enable a particular Guestbook for your dataset, which is setup at the Dataverse-level. For specific instructions please visit the Dataset Guestbooks section of the Dataverse Management page.






Roles & Permissions

Dataverse user accounts can be granted roles that define which actions they are allowed to take on specific dataverses, datasets, and/or files. Each role comes with a set of permissions, which define the specific actions that users may take.

Roles and permissions may also be granted to groups. Groups can be defined as a collection of Dataverse user accounts, a collection of IP addresses (e.g. all users of a library’s computers), or a collection of all users who log in using a particular institutional login (e.g. everyone who logs in with a particular university’s account credentials).


Dataset-Level

Admins or curators of a dataset can assign roles and permissions to the users of that dataset. If you are an admin or curator of a dataset, then you can get to the dataset permissions page by clicking the “Edit” button, highlighting “Permissions” from the dropdown list, and clicking “Dataset”.

When you access a dataset’s permissions page, you will see two sections:

Users/Groups: Here you can assign roles to specific users or groups, determining which actions they are permitted to take on your dataset. You can also reference a list of all users who have roles assigned to them for your dataset and remove their roles if you please. Some of the users listed may have roles assigned at the dataverse level, in which case those roles can only be removed from the dataverse permissions page.

Roles: Here you can reference a full list of roles that can be assigned to users of your dataset. Each role lists the permissions that it offers.




File-Level

If specific files in your dataset are restricted access, then you can grant specific users or groups access to those files while still keeping them restricted to the general public. If you are an admin or curator of a dataset, then you can get to the file-level permissions page by clicking the “Edit” button, highlighting “Permissions” from the dropdown list, and clicking “File”.

When you access a dataset’s file-level permissions page, you will see two sections:

Users/Groups: Here you can see which users or groups have been granted access to which files. You can click the “Grant Access to Users/Groups” button to see a box where you can grant access to specific files within your dataset to specific users or groups. If any users have requested access to a file in your dataset, you can grant or reject their access request here.

Restricted Files: In this section, you can see the same information, but broken down by each individual file in your dataset. For each file, you can click the “Assign Access” button to see a box where you can grant access to that file to specific users or groups.






Data Provenance

Data Provenance is a record of where your data came from and how it reached its current form. It describes the origin of a data file, any transformations that have been made to that file, and any persons or organizations associated with that file. A data file’s provenance can aid in reproducibility and compliance with legal regulations. Dataverse can help you keep track of your data’s provenance. Currently, Dataverse only makes provenance information available to those who have edit permissions on your dataset, but in the near future we plan to expand this feature to make provenance information available to the public. You can track our progress in this issue [https://github.com/IQSS/dataverse/issues/4346] on the Dataverse GitHub repository.

Dataverse accepts provenance information in two forms: a Provenance File or a free-text Provenance Description. You can attach this provenance information to your data files in Dataverse as part of the file upload process, by clicking Edit -> Provenance:

[image: file-upload-prov-button]

This will open a window where you can add your Provenance File and/or Provenance Description:

[image: file-upload-prov-window]

A Provenance File is the preferred way of submitting provenance information to Dataverse because it provides a detailed and trustworthy record. Provenance files are typically generated during the process of data analysis, using provenance capture tools like provR, RDataTracker, NoWorkFlow, recordr, or CamFlow.

Once you upload a provenance file, Dataverse will need some additional information in order to accurately connect it to your data file. Once provenance file upload finishes, an input box labeled “Connect entity” will appear under the file. Provenance files contain a list of “entities”, which include your data file as well as any objects associated with it (e.g. a chart, a spellchecker, etc.). You will need to tell Dataverse which entity within the provenance file represents your data file. You may type the name of the entity into the box, or click the arrow next to the box and select the entity from a list of all entities in the provenance file.

For more information on entities and the contents of provenance files, see the W3C PROV Model Primer [https://www.w3.org/TR/prov-primer/#intuitive-overview-of-prov].

Once you’ve uploaded your Provenance File and connected the proper entity, you can hit the Preview button to view the raw JSON of the Provenance File. This can help you confirm that you’ve uploaded the right file. Be sure to double-check it, because the Provenance File will made permanent once it’s finalized. At that point you will not be able to replace, remove, or otherwise edit the Provenance File. This ensures that the Provenance File maintains a stable, immutable record of the data file’s history. This finalization of the Provenance File happens at different points depending on the status of your data file. If this is a brand new data file that has never been published before, then its associated Provenance File will be made permanent once you publish the dataset. If this data file has been published in a previous version of your dataset, then its associated Provenance File will be made permanent as soon as you upload the Provenance File and click “Save Changes” on the warning popup.

A Provenance Description allows you to add more provenance information in addition to or in place of a provenance file. This is a free-text field that allows you to enter any information you feel might be relevant to those interested in learning about the provenance of your data. This might be a good place to describe provenance factors like what operating system you used when working with the data file, what functions or libraries you used, how data was merged into the file, what version of the file you used, etc. The Provenance Description is not as useful or trustworthy as a provenance file, but it can still provide value. Unlike the Provenance File, the Provenance Description is never made permanent: you can always edit, remove, or replace it at any time.

You can return to attach provenance to your data file later on by clicking the “Add + Edit Metadata” button on the file page, and then clicking the “Edit -> Provenance” button.




Thumbnails + Widgets


Thumbnails

Thumbnail images can be assigned to a dataset manually or automatically. The thumbnail for a dataset appears on the search result card for that dataset and on the dataset page itself. If a dataset contains one or more data files that Dataverse recognizes as an image, then one of those images is automatically selected as the dataset thumbnail.

If you would like to manually select your dataset’s thumbnail, you can do so by clicking the “Edit” button on your dataset, and selecting “Thumbnails + Widgets” from the dropdown menu.

On this page, under the Thumbnail tab you will see three possible actions.

Select Available File: Click the “Select Thumbnail” button to choose an image from your dataset to use as the dataset thumbnail.

Upload New File: Upload an image file from your computer to use as the dataset thumbnail. While by default your thumbnail image is drawn from a file in your dataset, this will allow you to upload a separate image file to use as your dataset thumbnail. This uploaded image file will only be used as the dataset thumbnail; it will not be stored as a data file in your dataset.

Remove Thumbnail: If you click the “Remove” button under the thumbnail image, you will remove the dataset’s current thumbnail. The Dataset will then revert to displaying a basic default icon as the dataset thumbnail.

When you’re finished on this page, be sure to click “Save Changes” to save what you’ve done.

Note: If you prefer, it is also possible to set an image file in your dataset as your thumbnail by selecting the file, going to Edit Files -> Metadata, and using the “Set Thumbnail” button.




Widgets

The Widgets feature provides you with code for your personal website so your dataset can be displayed. There are two types of Widgets for a dataset: the Dataset Widget and the Dataset Citation Widget. Widgets are found by going to your dataset page, clicking the “Edit” button (the one with the pencil icon) and selecting “Thumbnails + Widgets” from the dropdown menu.

In the Widgets tab, you can copy and paste the code snippets for the widget you would like to add to your website. If you need to adjust the height of the widget on your website, you may do so by editing the heightPx=500 parameter in the code snippet.


Dataset Widget

The Dataset Widget allows the citation, metadata, files and terms of your dataset to be displayed on your website. When someone downloads a data file in the widget, it will download directly from the datasets on your website. If a file is restricted, they will be directed to your dataverse to log in, instead of logging in through the widget on your site.

To edit your dataset, you will need to return to the Dataverse repository where the dataset is stored. You can easily do this by clicking on the link that says “Data Stored in (Name) Dataverse” found in the bottom of the widget.




Dataset Citation Widget

The Dataset Citation Widget will provide a citation for your dataset on your personal or project website. Users can download the citation in various formats by using the Cite Data button. The persistent URL in the citation will direct users to the dataset in your dataverse.




Adding Widgets to an OpenScholar Website


	Log in to your OpenScholar website


	Either build a new page or navigate to the page you would like to use to show the Dataverse widgets.


	Click on the Settings Cog and select Layout


	At the top right, select Add New Widget and under Misc. you will see the Dataverse Dataset and the Dataverse Dataset Citation Widgets. Click on the widget you would like to add, fill out the form, and then drag it to where you would like it to display in the page.











Publish Dataset

When you publish a dataset (available to an Admin, Curator, or any custom role which has this level of permission assigned), you make it available to the public so that other users can browse or search for it. Once your dataset is ready to go public, go to your dataset page and click on the “Publish” button on the right hand side of the page. A pop-up will appear to confirm that you are ready to actually Publish since once a dataset is made public it can no longer be unpublished.

Whenever you edit your dataset, you are able to publish a new version of the dataset. The publish dataset button will reappear whenever you edit the metadata of the dataset or add a file.

Note: Prior to publishing your dataset the Data Citation will indicate that this is a draft but the “DRAFT VERSION” text
will be removed as soon as you Publish.




Submit for Review

If you have a Contributor role (can edit metadata, upload files, and edit files, edit Terms, Guestbook, and Submit datasets for review) in a Dataverse you can submit your dataset for review when you have finished uploading your files and filling in all of the relevant metadata fields. To Submit for Review, go to your dataset and click on the “Submit for Review” button, which is located next to the “Edit” button on the upper-right. Once Submitted for Review: the Admin or Curator for this Dataverse will be notified to review this dataset before they decide to either “Publish” the dataset or “Return to Author”. If the dataset is published the contributor will be notified that it is now published. If the dataset is returned to the author, the contributor of this dataset will be notified that they need to make modifications before it can be submitted for review again.




Private URL to Review Unpublished Dataset

Creating a Private URL for your dataset allows you to share your dataset (for viewing and downloading of files) before it is published to a wide group of individuals who may not have a user account on Dataverse. Anyone you send the Private URL to will not have to log into Dataverse to view the dataset.


	Go to your unpublished dataset


	Select the “Edit” button


	Select “Private URL” in the dropdown menu


	In the pop-up select “Create Private URL”


	Copy the Private URL which has been created for this dataset and it can now be shared with anyone you wish to have access to view or download files in your unpublished dataset.




To disable a Private URL and to revoke access, follow the same steps as above until step #3 when you return to the popup, click the “Disable Private URL” button.




Dataset Versions

Versioning is important for long-term research data management where metadata and/or files are updated over time. It is used to track any metadata or file changes (e.g., by uploading a new file, changing file metadata, adding or editing metadata) once you have published your dataset.

[image: image3]

Once you edit your published dataset a new draft version of this dataset will be created. To publish this new version of your dataset, select the “Publish Dataset” button on the top right side of the page. If you were at version 1 of your dataset, depending on the types of changes you had made, you would be asked to publish your draft as either version 1.1 or version 2.0.

Important Note: If you add a file, your dataset will automatically be bumped up to a major version (e.g., if you were at 1.0 you will go to 2.0).

On the Versions tab of a dataset page, there is a versions table that displays the version history of the dataset. You can use the version number links in this table to navigate between the different versions of the dataset, including the unpublished draft version, if you have permission to access it.

There is also a Versions tab on the file page. The versions table for a file displays the same information as the dataset, but the summaries are filtered down to only show the actions related to that file. If a new dataset version were created without any changes to an individual file, that file’s version summary for that dataset version would read “No changes associated with this version”.


Version Details

To view exactly what has changed, starting from the originally published version to any subsequent published versions: click the Versions tab on the dataset page to see all versions and changes made for that particular dataset.

Once you have more than one version (this can simply be version 1 and a draft), you can click the “View Details” link next to each summary to learn more about the metadata fields and files that were either added or edited. You can also click the checkboxes to select any two dataset versions, then click the “View Differences” button to open the Version Differences Details popup and compare the differences between them.






Cloud Storage + Computing

Dataverse installations can be configured to facilitate cloud-based storage and/or computing (this feature is considered experimental at this time, and some of the kinks are still being worked out). While the default configuration for Dataverse uses a local file system for storing data, a cloud-enabled Dataverse installation can use a Swift object storage database for its data. This allows users to perform computations on data using an integrated cloud computing environment.


Cloud Computing

The “Compute” button on dataset and file pages will allow you to compute on a single dataset, multiple datasets, or a single file. You can use it to build a compute batch and go directly to the cloud computing environment that is integrated with Dataverse.




Cloud Storage Access

If you need to access a dataset in a more flexible way than the Compute button provides, then you can use the Cloud Storage Access box on the dataset page to copy the dataset’s container name. This unique identifer can then be used to allow direct access to the dataset.






Dataset Deaccession


Warning

It is not recommended that you deaccession a dataset or a version of a dataset. This is a very serious action that should only occur if there is a legal or valid reason for the dataset to no longer be accessible to the public. If you absolutely must deaccession, you can deaccession a version of a dataset or an entire dataset.



To deaccession, go to your published dataset (or add a new one and publish it), click the “Edit” button, and from the dropdown menu select “Deaccession Dataset”. If you have multiple versions of a dataset, you can select here which versions you want to deaccession or choose to deaccession the entire dataset.

You must also include a reason as to why this dataset was deaccessioned. Select the most appropriate reason from the dropdown list of options. If you select “Other”, you must also provide additional information.

Add more information as to why this was deaccessioned in the free-text box. If the dataset has moved to a different repository or site you are encouraged to include a URL (preferably persistent) for users to continue to be able to access this dataset in the future.

If you deaccession the most recently published version of the dataset but not all versions of the dataset, you may then revisit an earlier version and create a new non-deaccessioned draft for the dataset. For example, imagine you have a version 1 and version 2 of a dataset, both published, and you deaccession version 2. You may then edit version 1 of the dataset and a new draft version will be created.

Important Note: A tombstone landing page with the basic citation metadata will always be accessible to the public if they use the persistent URL (Handle or DOI) provided in the citation for that dataset.  Users will not be able to see any of the files or additional metadata that were previously available prior to deaccession.







          

      

      

    





  

    
      
          
            
  
Tabular Data File Ingest

Contents:



	Supported File Formats

	Tabular Data, Representation, Storage and Ingest
	What Happens During this “Ingest”?

	Tabular Data and Metadata
	Data vs. Metadata

	Tabular Metadata in Dataverse









	SPSS
	Supported Versions

	Limitations

	SPSS Control Cards - not supported

	Support for Language Encodings in SPSS





	Stata

	R Data Format
	Overview.

	Data Formatting Requirements.

	Data Types, compared to other supported formats (Stat, SPSS)
	Integers, Doubles, Character strings

	R Factors

	Boolean values

	Limitations of R, as compared to SPSS and STATA.





	Time values in R





	Excel

	CSV/TSV
	Ingest of Comma-Separated Values and Tab-Separated Values files as tabular data.

	Main formatting requirements

	Limitations

	Recognized data types and formatting













          

      

      

    





  

    
      
          
            
  
Supported File Formats

Tabular Data ingest supports the following file formats:







	File format

	Versions supported





	SPSS (POR and SAV formats)

	7 to 22



	STATA

	4 to 13



	R

	up to 3



	Excel

	XLSX only (XLS is NOT supported)



	CSV (comma-separated values)

	(limited support)






See the subsections in the left sidebar for more information on each of these supported formats.





          

      

      

    





  

    
      
          
            
  
Tabular Data, Representation, Storage and Ingest

This section explains the basics of how tabular data is handled in
the application and what happens during the ingest process, as the
files uploaded by the user are processed and converted into the
archival format in the Dataverse application.


Contents:


	What Happens During this “Ingest”?


	Tabular Data and Metadata


	Data vs. Metadata


	Tabular Metadata in Dataverse











What Happens During this “Ingest”?

The goal of our ingest process is to extract the data content from the
user’s files and archive it in an application-neutral, easily-readable
format. What does this mean? - Commercial applications such as SPSS
and Stata use their own, proprietary formats to encode their
files. Some companies publish the specifications of their formats
(Thank you Stata - much appreciated!), some don’t (SPSS - yes, we are
still frowning at you here at the Dataverse Project). Either way,
reading these specially-formatted files requires some extra knowledge
or special software. For these reasons they are not considered ideal
for the purposes of archival preservation. Dataverse stores the raw
data content extracted from such files in plain text, TAB-delimited
files. The metadata information that describes this content is stored
separately, in a relational database, so that it can be accessed
efficiently by the application. For the purposes of archival
preservation it can be exported, in plain text XML files, using a
standardized, open DDI Codebook [http://www.ddialliance.org/Specification/DDI-Codebook/2.5/]
format. (more info below)




Tabular Data and Metadata


Data vs. Metadata

A simple example is a numeric data column in a user’s Stata file that
contains 0s and 1s. These numeric values will be extracted and stored
in a TAB-delimited file. By themselves, if you don’t know what these
values represent, these 1s and 0s are not meaningful data. So the
Stata file has some additional information that describes this data
vector: it represents the observation values of a variable with the
name “party”; with a descriptive label “Party Affiliation”; and
the 2 numeric values have categorical labels of “Democrat” for 0 and
“Republican” for 1. This extra information that adds value to the data
is metadata.




Tabular Metadata in Dataverse

The structure of the metadata defining tabular data variables used in
Dataverse was originally based on the DDI Codebook [http://www.ddialliance.org/Specification/DDI-Codebook/2.5/] format.

You can see an example of DDI output under the “Data Variable Metadata Access” section of the Data Access API section of the API Guide.









          

      

      

    





  

    
      
          
            
  
SPSS

SPSS data files (POR and SAV formats).


Contents:


	Supported Versions


	Limitations


	SPSS Control Cards - not supported


	Support for Language Encodings in SPSS







Supported Versions

Dataverse supports reading of all SPSS versions 7 to 22. But please see the “Limitations” section.




Limitations

SPSS does not openly publish the specifications of their proprietary file formats. Our ability to read and parse their files is based on some documentation online from unofficial sources, and some reverse engineering. Because of that we cannot, unfortunately, guarantee to be able
to process any SPSS file uploaded.

However, we’ve been improving this process for a few years by now, and it should be quite robust in the current version of Dataverse. Thus your chances of success - uploading an SPSS files and having it turned into a fully functional tabular data table in the Dataverse - should be reasonably good.

If you are having a problem with a particular SPSS file, please contact our support and we’ll see if it’s something we could further improve in our SPSS ingest driver.




SPSS Control Cards - not supported

In the past, there have been attempts to support SPSS “control cards”, in addition to the .SAV and .POR files; both in the early VDC software, and in some versions of DVN. A “control card” is a plain text file with a set of SPSS commands that describe the raw data, provided in a separate, fixed-width-columns or comma-separated-values file. For various reasons, it has never been very successful. We weren’t seeing too much demand for this ingest feature, so it was dropped from Dataverse 4.0.

Please contact us if you have any questions and/or strong feelings on this issue, or if you have serious amounts of data exclusively available in this format that you would like to ingest under Dataverse.




Support for Language Encodings in SPSS

Historically, there was no support for specifying a particular language/code page encoding for the data stored in an SPSS file. Meaning, text values in none-ASCII encodings, or non-Latin characters could be entered and stored, but there was no setting to unambiguously specify what language, or what character set it was. By default, Dataverse will try to interpret binary characters as UTF8. If that’s not working - for example, if the descriptive labels and/or categorical values ingest as garbage - and if you happen to know what encoding was used in the original file, you can now specify it in the Ingest Options.

For example, if you know that the text in your SAV file is in Mandarin, and is encoded using the GB2312, specify it as follows:

Upload your file, in the “Edit Files” tab of the Dataset page. Once the file is recognized as SPSS/save, and before you click Save, go into the “Advanced Ingest Options”, and select “Simplified Chinese, GB2312” in the nested menu under “Language Encoding” -> “East Asian”.







          

      

      

    





  

    
      
          
            
  
Stata

Of all the third party statistical software providers, Stata does the best job at documenting the internal format of their files, by far. And at making that documentation freely and easily available to developers (yes, we are looking at you, SPSS). Because of that, Stata is the best supported format for tabular data ingest.

New in Dataverse 4.0: support for Stata v.13 has been added.





          

      

      

    





  

    
      
          
            
  
R Data Format

Support for R (.RData) files has been introduced in DVN 3.5.


Contents:


	Overview.


	Data Formatting Requirements.


	Data Types, compared to other supported formats (Stat, SPSS)


	Integers, Doubles, Character strings


	R Factors


	Boolean values


	Limitations of R, as compared to SPSS and STATA.






	Time values in R







Overview.

R has been increasingly popular in the research/academic community,
owing to the fact that it is free and open-source (unlike SPSS and
STATA). Consequently, there is an increasing amount of data available
exclusively in R format.




Data Formatting Requirements.

The data must be formatted as an R dataframe (data.frame()). If an
.RData file contains multiple dataframes, only the 1st one will be
ingested (this may change in the future).




Data Types, compared to other supported formats (Stat, SPSS)


Integers, Doubles, Character strings

The handling of these types is intuitive and straightforward. The
resulting tab file columns, summary statistics and UNF signatures
should be identical to those produced by ingesting the same vectors
from SPSS and Stata.

Things that are unique to R:

R explicitly supports Missing Values for all of the types above;
Missing Values encoded in R vectors will be recognized and preserved
in TAB files, counted in the generated summary statistics
and data analysis. Please note however that the Dataverse notation for
a missing value, as stored in a TAB file, is an empty string, an not “NA” as in R.

In addition to Missing Values, R recognizes “Not a Value” (NaN) and
positive and negative infinity for floating point variables. These
are now properly supported by the Dataverse.

Also note, that unlike Stata, that does recognize “float” and “double”
as distinct data types, all floating point values in R are in fact
doubles.




R Factors

These are ingested as “Categorical Values” in the Dataverse.

One thing to keep in mind: in both Stata and SPSS, the actual value of
a categorical variable can be both character and numeric. In R, all
factor values are strings, even if they are string representations of
numbers. So the values of the resulting categoricals in the Dataverse will
always be of string type too.

Another thing to note is that R factors have no builtin support for
SPSS or STATA-like descriptive labels. This is in fact potentially
confusing, as they also use the word “label”, in R parlance. However,
in the context of a factor in R, it still refers to the “payload”, or
the data content of its value. For example, if you create a factor
with the “labels” of democrat, republican and undecided, these
strings become the actual values of the resulting vector. Once
ingested in the Dataverse, these values will be stored in the
tab-delimited file. The Dataverse DataVariable object representing the
vector will be of type “Character” and have 3 VariableCategory objects
with the democrat, etc. for both the CategoryValue and
CategoryLabel.  (In one of the future releases, we are planning to
make it possible for the user to edit the CategoryLabel, using it for
its intended purpose - as a descriptive, human-readable text text
note).


To properly handle R vectors that are ordered factors Dataverse (starting with DVN 3.6) supports the concept of an “Ordered Categorical” - a categorical value where an explicit order is assigned to the list of value labels.






Boolean values

R Boolean (logical) values are supported.




Limitations of R, as compared to SPSS and STATA.

Most noticeably, R lacks a standard mechanism for defining descriptive
labels for the data frame variables.  In the Dataverse, similarly to
both Stata and SPSS, variables have distinct names and labels; with
the latter reserved for longer, descriptive text.
With variables ingested from R data frames the variable name will be
used for both the “name” and the “label”.

Optional R packages exist for providing descriptive variable labels;
in one of the future versions support may be added for such a
mechanism. It would of course work only for R files that were
created with such optional packages.

Similarly, R categorical values (factors) lack descriptive labels too.
Note: This is potentially confusing, since R factors do
actually have “labels”.  This is a matter of terminology - an R
factor’s label is in fact the same thing as the “value” of a
categorical variable in SPSS or Stata and Dataverse; it contains the actual
meaningful data for the given observation. It is NOT a field reserved
for explanatory, human-readable text, such as the case with the
SPSS/Stata “label”.

Ingesting an R factor with the level labels “MALE” and “FEMALE” will
produce a categorical variable with “MALE” and “FEMALE” in the
values and labels both.






Time values in R

This warrants a dedicated section of its own, because of some unique
ways in which time values are handled in R.

R makes an effort to treat a time value as a real time instance. This
is in contrast with either SPSS or Stata, where time value
representations such as “Sep-23-2013 14:57:21” are allowed; note that
in the absence of an explicitly defined time zone, this value cannot
be mapped to an exact point in real time.  R handles times in the
“Unix-style” way: the value is converted to the
“seconds-since-the-Epoch” Greenwich time (GMT or UTC) and the
resulting numeric value is stored in the data file; time zone
adjustments are made in real time as needed.

Things still get ambiguous and confusing when R displays this time
value: unless the time zone was explicitly defined, R will adjust the
value to the current time zone. The resulting behavior is often
counter-intuitive: if you create a time value, for example:

timevalue<-as.POSIXct("03/19/2013 12:57:00", format = "%m/%d/%Y %H:%M:%OS");

on a computer configured for the San Francisco time zone, the value
will be differently displayed on computers in different time zones;
for example, as “12:57 PST” while still on the West Coast, but as
“15:57 EST” in Boston.

If it is important that the values are always displayed the same way,
regardless of the current time zones, it is recommended that the time
zone is explicitly defined. For example:

attr(timevalue,"tzone")<-"PST"

or

timevalue<-as.POSIXct("03/19/2013 12:57:00", format = "%m/%d/%Y %H:%M:%OS", tz="PST");

Now the value will always be displayed as “15:57 PST”, regardless of
the time zone that is current for the OS … BUT ONLY if the OS
where R is installed actually understands the time zone “PST”, which
is not by any means guaranteed! Otherwise, it will quietly adjust
the stored GMT value to the current time zone, yet it will still
display it with the “PST” tag attached!** One way to rephrase this is
that R does a fairly decent job storing time values in a
non-ambiguous, platform-independent manner - but gives you no guarantee that
the values will be displayed in any way that is predictable or intuitive.

In practical terms, it is recommended to use the long/descriptive
forms of time zones, as they are more likely to be properly recognized
on most computers. For example, “Japan” instead of “JST”.  Another possible
solution is to explicitly use GMT or UTC (since it is very likely to be
properly recognized on any system), or the “UTC+<OFFSET>” notation. Still, none of the above
guarantees proper, non-ambiguous handling of time values in R data
sets. The fact that R quietly modifies time values when it doesn’t
recognize the supplied timezone attribute, yet still appends it to the
changed time value does make it quite difficult. (These issues are
discussed in depth on R-related forums, and no attempt is made to
summarize it all in any depth here; this is just to made you aware of
this being a potentially complex issue!)

An important thing to keep in mind, in connection with the Dataverse ingest
of R files, is that it will reject an R data file with any time
values that have time zones that we can’t recognize. This is done in
order to avoid (some) of the potential issues outlined above.

It is also recommended that any vectors containing time values
ingested into the Dataverse are reviewed, and the resulting entries in the
TAB files are compared against the original values in the R data
frame, to make sure they have been ingested as expected.

Another potential issue here is the UNF. The way the UNF
algorithm works, the same date/time values with and without the
timezone (e.g. “12:45” vs. “12:45 EST”) produce different
UNFs. Considering that time values in Stata/SPSS do not have time
zones, but ALL time values in R do (yes, they all do - if the timezone
wasn’t defined explicitly, it implicitly becomes a time value in the
“UTC” zone!), this means that it is impossible to have 2 time
value vectors, in Stata/SPSS and R, that produce the same UNF.

A pro tip: if it is important to produce SPSS/Stata and R versions of
the same data set that result in the same UNF when ingested, you may
define the time variables as strings in the R data frame, and use
the “YYYY-MM-DD HH:mm:ss” formatting notation. This is the formatting used by the UNF
algorithm to normalize time values, so doing the above will result in
the same UNF as the vector of the same time values in Stata.

Note: date values (dates only, without time) should be handled the
exact same way as those in SPSS and Stata, and should produce the same
UNFs.







          

      

      

    





  

    
      
          
            
  
Excel

Excel files (New in Dataverse 4.0!)

Note: only the “new”, XLSX Excel files are supported. We are not planning to add support for the old-style, binary XLS files.





          

      

      

    





  

    
      
          
            
  
CSV/TSV


Contents:


	Ingest of Comma-Separated Values and Tab-Separated Values files as tabular data.


	Main formatting requirements


	Limitations


	Recognized data types and formatting







Ingest of Comma-Separated Values and Tab-Separated Values files as tabular data.

Dataverse will make an attempt to turn CSV and TSV files uploaded by the user into tabular data, using the Apache CSV parser [https://commons.apache.org/proper/commons-csv/].




Main formatting requirements

The first row in the document will be treated as the CSV’s header, containing variable names for each column.

Each following row must contain the same number of comma-separated values (“cells”) as that header.

As of the Dataverse 4.8 release, we allow ingest of CSV files with commas and line breaks within cells. A string with any number of commas and line breaks enclosed within double quotes is recognized as a single cell. Double quotes can be encoded as two double quotes in a row ("").

For example, the following lines:

a,b,"c,d
efgh""ijk""l",m,n





are recognized as a single row with 5 comma-separated values (cells):

a
b
c,d\nefgh"ijk"l
m
n





(where \n is a new line character)




Limitations

Compared to other formats, relatively little information about the data (“variable-level metadata”) can be extracted from a CSV file. Aside from the variable names supplied in the top line, the ingest will make an educated guess about the data type of each comma-separated column. One of the supported rich file formats (Stata, SPSS and R) should be used if you need to provide more descriptive variable-level metadata (variable labels, categorical values and labels, explicitly defined data types, etc.).




Recognized data types and formatting

The application will attempt to recognize numeric, string, and date/time values in the individual columns.

For dates, the yyyy-MM-dd format is recognized.

For date-time values, the following 2 formats are recognized:

yyyy-MM-dd HH:mm:ss

yyyy-MM-dd HH:mm:ss z (same format as the above, with the time zone specified)

For numeric variables, the following special values are recognized:

inf, +inf - as a special IEEE 754 “positive infinity” value;

NaN - as a special IEEE 754 “not a number” value;

An empty value (i.e., a comma followed immediately by another comma, or the line end), or NA - as a missing value.

null - as a numeric zero.

(any combinations of lower and upper cases are allowed in the notations above).

In character strings, an empty value (a comma followed by another comma, or the line end) is treated as an empty string (NOT as a missing value).

Any non-Latin characters are allowed in character string values, as long as the encoding is UTF8.

Note: When the ingest recognizes a CSV or TSV column as a numeric vector, or as a date/time value, this information is reflected and saved in the database as the data variable metadata. To inspect that metadata, click on the Download button next to a tabular data file, and select Variable Metadata. This will export the variable records in the DDI XML format. (Alternatively, this metadata fragment can be downloaded via the Data Access API; for example: http://localhost:8080/api/access/datafile/<FILEID>/metadata/ddi).

The most immediate implication is in the calculation of the UNF signatures for the data vectors, as different normalization rules are applied to numeric, character, and date/time values. (see the Universal Numerical Fingerprint (UNF) section for more information). If it is important to you that the UNF checksums of your data are accurately calculated, check that the numeric and date/time columns in your file were recognized as such (as type=numeric and type=character, category=date(time), respectively). If, for example, a column that was supposed to be numeric is recognized as a vector of character values (strings), double-check that the formatting of the values is consistent. Remember, a single improperly-formatted value in the column will turn it into a vector of character strings, and result in a different UNF. Fix any formatting errors you find, delete the file from the dataset, and try to ingest it again.







          

      

      

    





  

    
      
          
            
  
Data Exploration Guide

Note that the installation of Dataverse you are using may have additional or different tools configured. Developers interested in creating tools should refer to the External Tools section of the Installation Guide.

Contents:



	TwoRavens: Tabular Data Exploration
	Exploring and Analyzing Tabular files in Dataverse

	Selection/Left Panel
	Original Data and Subset Data

	Variables, Models, and Summary





	Modeling/Center Panel

	Results/Right Panel
	Subset

	Set Covariates





	Additional Buttons
	Estimate

	Force

	Reset









	WorldMap: Geospatial Data Exploration
	Dataverse and WorldMap

	What is Geoconnect?

	Mapping shapefiles with Geoconnect

	Mapping tabular files with Geoconnect
	Preparing a tabular file to be mapped

	Creating the map





	Finalizing your map

	Removing your map













          

      

      

    





  

    
      
          
            
  
TwoRavens: Tabular Data Exploration

Please note: This document is a bit old and may need an update. The TwoRavens
project has a more recently published user guide on their site: http://2ra.vn/papers/tworavens-guide.pdf.


Contents:


	Exploring and Analyzing Tabular files in Dataverse


	Selection/Left Panel


	Original Data and Subset Data


	Variables, Models, and Summary






	Modeling/Center Panel


	Results/Right Panel


	Subset


	Set Covariates






	Additional Buttons


	Estimate


	Force


	Reset











Exploring and Analyzing Tabular files in Dataverse

On the files tab, click on the “Explore” button to initiate TwoRavens Data Exploration and Analysis Tool.




Selection/Left Panel

The left panel contains two sets of buttons: (1) Original Data and Subset Data; and (2) Variables, Models, and Summary.


Original Data and Subset Data

When TwoRavens is initiated, you begin with the original dataset, and thus the Original Data button is selected.  You will not be able to select the Subset Data until you have subsetted the data using the subset and select features in the right panel.  After you have selected a subset of your data, you may toggle between that subset and the original data.  If you wish to select a different subset, you may do so, but note that only one subset is supported at a time.




Variables, Models, and Summary

Each of these tabs displays something different in the left panel when selected.  The Variables tab shows a list of all the variables.  When a variable name is hovered over, you can see that variable’s summary statistics. The first three variables are selected by default and displayed in the center panel, but you may add or remove variables by clicking on their name in the Variables tab.

The Models tab displays a list of Zelig models that are supported by TwoRavens. A brief model description is visible when hovering on the model name.  Depending on the level of measurement of the dependent variable (continuous, ordinal, dichotomous, etc.), particular models may or may not be appropriate.

Note that to estimate a model, you must select one from the list. Currently, please use only Ordinary Least Squares (ls) as we are working on making other models available.
(Suggestion: maybe we need to gray out the ones the other ones for the time being)

The Summary tab shows summary statistics when a pebble is hovered over. If one removes the pointer from hovering over a pebble, the previous tab will be displayed. So, if you wish to have the summary tab displayed regardless of where the pointer is, click on Summary before hovering over a pebble. Otherwise, if Variables or Models has been the last tab selected, when the pointer is no longer hovering over a pebble, the table will return to Variables or Models.






Modeling/Center Panel

The center panel displays a graphical representation of variable relations and denotes variables that have been tagged with certain properties.  Variables may be tagged as either a dependent variable, a time series variable, or a cross sectional variable.  Each of these are accomplished by clicking on the appropriate button at the top of the screen, and then clicking on a pebble in the center panel.  You’ll notice that when a variable is tagged with a property, the fill color becomes white, and the outline (or stroke) of the pebble turns the color of the property’s button.  Note that to estimate a model, the dependent variable must be selected.

Variable relations are specified by point-click-drag from one pebble to the other.  When a path between pebbles has been specified, it is visually presented with a dotted arrow line and may be removed by pushing the delete key on your keyboard.




Results/Right Panel

This section allows you to specify a subset of the data that you wish to estimate the model on, or that you wish to select and see updated summary statistics and distributions, and to set covariate values for the Zelig simulations (this is Zelig’s setx function).


Subset

To subset the data, click on the subset button and highlight (or brush) the portion of the distribution that you wish to use. You may remove the selection by clicking anywhere on the plot that is outside of the selected area.  Or, if you wish to move the selected region, click inside the selection and move it to the left or right. If no region is selected, then by default the full range of values are used. If more than one variable is selected for subsetting, only the overlapping region is used in the model. If there are no overlapping regions, (i.e., if subsetted there would be no data), then only the first variable is used.  Notice that range (or extent) of the selection for each variable is displayed below.

With a region selected, you have two options. First, you may click the Estimate button to estimate a model on using only the specified subset. Second, you may click the Select button. This will not estimate a model, but it will subset the data and return new summary statistics and plots for the subset. You may wish to use this feature to see how a subset will change the Set Covariate (Zelig’s setx) defaults, for example. After selecting a subset, you may toggle back and forth between the subsetted data and the original data by activating the appropriate button in the left panel.




Set Covariates

The Set Covariates button plots the distributions of each of the pebbles with an additional axis that contains two sliders, each of which default to the variable’s mean. This is TwoRavens’ equivalent of Zelig’s setx function. Move these sliders to the left or right to set your covariates at the desired value prior to estimation. Notice that the selected values appear below each plot.

After clicking the Estimate button, the model will be estimated and, upon completion, results appear in the Results tab. The results include figures produced by Zelig (and eventually the equation that has been estimated, the R code used to estimate the model, and a results table).






Additional Buttons


Estimate

This executes the specified statistical model. Notice the presence of blue highlight on the “Estimate” button while process is running, turning into green upon completion. Note: you cannot use estimate without selecting a dependent variable and a model.




Force

The Force button allows you to control the way layout of the pebbles. To use this feature, first make sure none of the pebbles are highlighted.  If one is, simply click on it to remove the highlighting. Second, press and hold the control key.  Third, while holding down the control key, click the Force button. Fourth, continue to hold the control key and click on a pebble. You may now release the control key.  Click on a pebble and drag it around on your screen.




Reset

This is your start over button. Clicking this is equivalent to reloading the Web page or re-initiating TwoRavens.









          

      

      

    





  

    
      
          
            
  
WorldMap: Geospatial Data Exploration


Contents:


	Dataverse and WorldMap


	What is Geoconnect?


	Mapping shapefiles with Geoconnect


	Mapping tabular files with Geoconnect


	Preparing a tabular file to be mapped


	Creating the map






	Finalizing your map


	Removing your map







Dataverse and WorldMap

WorldMap [http://worldmap.harvard.edu/] is developed by the Center for Geographic Analysis (CGA) at Harvard and is open source software that helps researchers visualize and explore their data in maps. The WorldMap and Dataverse collaboration allows researchers to upload shapefiles or tabular files to Dataverse for long term storage and receive a persistent identifier (through DOI), then easily navigate into WorldMap to interact with the data.

Note: WorldMap hosts their own user guide [http://worldmap.harvard.edu/static/docs/WorldMap_Help_en.pdf] that covers some of the same material as this page.




What is Geoconnect?

Geoconnect is a platform that integrates Dataverse and WorldMap, allowing researchers to visualize their geospatial data. Geoconnect can be used to create maps of shapefiles or of tabular files containing geospatial information. Geoconnect is an optional component of Dataverse, so if you are interested in this feature but don’t see it in the installation of Dataverse you are using, you should contact the support team for that installation and ask them to enable the Geoconnect feature.

If a data file’s owner has created a map of that data using Geoconnect, you can view the map by clicking the “Explore” button. If the data is in the form of a shapefile, the button takes you right to the map. If it’s a tabular file, the Explore button will be a dropdown, and you’ll need to select “Worldmap”.




Mapping shapefiles with Geoconnect

Geoconnect is capable of mapping shapefiles which are uploaded to Dataverse in .zip format. Specifically, Dataverse recognizes a zipped shapefile by:


	Examining the contents of the .zip file


	Checking for the existence of four similarly named files with the following extensions: .dbf, .prj, .shp, .shx




Once you have uploaded your .zip shapefile, a Map Data button will appear next to the file in the dataset. In order to use this button, you’ll need to publish your dataset. Once your dataset has been published, you can click on the Map Data button to be brought to Geoconnect, the portal between Dataverse and WorldMap that will allow you to create your map.

To get started with visualizing your shapefile, click on the blue “Visualize on WorldMap” button in Geoconnect. It may take up to 45 seconds for the data to be sent to WorldMap and then back to Geoconnect.

Once this process has finished, you will be taken to a new page where you can style your map through Attribute, Classification Method, Number of Intervals, and Colors. Clicking “Apply Changes” will send your map to both Dataverse and WorldMap, creating a preview of your map that will be visible on your file page and your dataset page.

Clicking “View on WorldMap” will open WorldMap in a new tab, allowing you to see how your map will be displayed there.

You can delete your map with the “Delete” button. If you decide to delete the map, it will no longer appear on WorldMap, and your dataset in Dataverse will no longer display the map preview.

When you’re satisfied with your map, you may click “Return to the Dataverse” to go back to Dataverse.

In the future, to replace your shapefile’s map with a new one, simply click the Map Data button on the dataset or file page to return to the Geoconnect edit map page.




Mapping tabular files with Geoconnect

Geoconnect can map tabular files that contain geospatial information such as latitude/longitude coordinates, census tracts, zip codes, Boston election wards, etc.


Preparing a tabular file to be mapped

1. Ingest

Geospatial tabular files need a bit of preparation in Dataverse before they can be mapped in Geoconnect. When you upload your file, Dataverse will take about ten seconds to ingest it. During the ingest process it will identify the file as tabular data.

[image: image1]

2.Tag as Geospatial

Next, you’ll need to let Dataverse know that your tabular file contains geospatial data. Select your file, click the “Edit Files” button, and select “Tags” from the dropdown menu. This will take you to the Edit Tags menu (pictured below). Under the “Tabular Data Tags” dropdown, select “Geospatial”. Then click “Save Changes”.

[image: image2]

3. Publish & Map Data

At this point, a “Map data” button will appear next to your file. Publish this new version of your dataset to activate this button.

[image: image3]




Creating the map

If your tabular file contains latitude and longitude columns, then the process is simple: those columns may be directly mapped. Otherwise, you will need to use a spatial join. Spatial joins tell WorldMap how to read your tabular data file in order to create a map that accurately represents it.

To carry out a spatial join, you’ll manually connect


	
	Geospatial column(s) from your Dataverse tabular file

	
	e.g., a census tract column from your table












with


	
	A WorldMap “target layer” that contains the same geospatial information

	
	e.g., WorldMap’s “target layer” containing census tract parameters












The following screenshots illustrate the mapping process:

1. Once you’ve pressed the “Map Data” button, you’re brought to this page:

[image: image4]

2. Choose a Geospatial Data Type

[image: image5]

3. Choose a column from your file to match the WorldMap Layer you selected

[image: image6]

4. Choose from the list of WorldMap Layers available for the Geospatial Data Type you selected

[image: image7]

5.Submit the data for mapping!

[image: image8]

6. View Results

At this point you will be presented with a basic map that can be styled to your specifications. The example pictured below includes an error message - some of the rows weren’t able to be matched properly. In this case, you could still go forward with your map, but without the information from the unmatched rows.

[image: image9]






Finalizing your map

Now that you have created your map:


	It exists on the WorldMap platform and may be viewed there – with all of WorldMap’s capabilities.


	Dataverse will contain a preview of the map and links to the larger version on WorldMap.




The map editor (pictured above) provides a set of options you can use to style your map. Clicking “Apply Changes” saves the current version of your map to Dataverse and Worldmap. The “Return to the Dataverse” button brings you back to Dataverse. “View on WorldMap” takes you to the map’s page on WorldMap, which offers additional views and options.

If you’d like to make further changes to your map in the future, you can return to the editor by clicking the “Map Data” button on your file.




Removing your map

You can delete your map at any time. If you are on Dataverse, click “Map Data” and click the “Delete Map” button on the upper right. This completely removes the map and underlying data from the WorldMap platform.







          

      

      

    





  

    
      
          
            
  
Appendix

Additional documentation complementary to the User Guide.


Contents:


	Metadata References







Metadata References

Dataverse is committed to using standard-compliant metadata to ensure that Dataverse
metadata can be mapped easily to standard metadata schemas and be exported into JSON
format (XML for tabular file metadata) for preservation and interoperability.

Detailed below are what metadata schemas we support for Citation and Domain Specific Metadata in Dataverse:


	Citation Metadata [https://docs.google.com/spreadsheet/ccc?key=0AjeLxEN77UZodHFEWGpoa19ia3pldEFyVFR0aFVGa0E#gid=0]: compliant with DDI Lite [http://www.ddialliance.org/specification/ddi2.1/lite/index.html], DDI 2.5 Codebook [http://www.ddialliance.org/], DataCite 3.1 [http://schema.datacite.org/meta/kernel-3.1/doc/DataCite-MetadataKernel_v3.1.pdf], and Dublin Core’s DCMI Metadata Terms [http://dublincore.org/documents/dcmi-terms/] (see .tsv version [https://github.com/IQSS/dataverse/blob/master/scripts/api/data/metadatablocks/citation.tsv]). Language field uses ISO 639-1 [https://www.loc.gov/standards/iso639-2/php/English_list.php] controlled vocabulary.


	Geospatial Metadata [https://docs.google.com/spreadsheet/ccc?key=0AjeLxEN77UZodHFEWGpoa19ia3pldEFyVFR0aFVGa0E#gid=4]: compliant with DDI Lite, DDI 2.5 Codebook, DataCite, and Dublin Core (see .tsv version [https://github.com/IQSS/dataverse/blob/master/scripts/api/data/metadatablocks/geospatial.tsv]). Country / Nation field uses ISO 3166-1 [http://en.wikipedia.org/wiki/ISO_3166-1] controlled vocabulary.


	Social Science & Humanities Metadata [https://docs.google.com/spreadsheet/ccc?key=0AjeLxEN77UZodHFEWGpoa19ia3pldEFyVFR0aFVGa0E#gid=1]: compliant with DDI Lite, DDI 2.5 Codebook, and Dublin Core (see .tsv version [https://github.com/IQSS/dataverse/blob/master/scripts/api/data/metadatablocks/social_science.tsv]).


	Astronomy and Astrophysics Metadata [https://docs.google.com/spreadsheet/ccc?key=0AjeLxEN77UZodHFEWGpoa19ia3pldEFyVFR0aFVGa0E#gid=3]
: These metadata elements can be mapped/exported to the International Virtual Observatory Alliance’s (IVOA)
VOResource Schema format [http://www.ivoa.net/documents/latest/RM.html] and is based on
Virtual Observatory (VO) Discovery and Provenance Metadata [http://perma.cc/H5ZJ-4KKY] (see .tsv version [https://github.com/IQSS/dataverse/blob/master/scripts/api/data/metadatablocks/astrophysics.tsv]).


	Life Sciences Metadata [https://docs.google.com/spreadsheet/ccc?key=0AjeLxEN77UZodHFEWGpoa19ia3pldEFyVFR0aFVGa0E#gid=2]: based on ISA-Tab Specification [https://isa-specs.readthedocs.io/en/latest/isamodel.html], along with controlled vocabulary from subsets of the OBI Ontology [http://bioportal.bioontology.org/ontologies/OBI] and the NCBI Taxonomy for Organisms [http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/] (see .tsv version [https://github.com/IQSS/dataverse/blob/master/scripts/api/data/metadatablocks/biomedical.tsv]).




See also the Dataverse 4.0 Metadata Crosswalk: DDI, DataCite, DC, DCTerms, VO, ISA-Tab [https://docs.google.com/spreadsheets/d/10Luzti7svVTVKTA-px27oq3RxCUM-QbiTkm8iMd5C54/edit?usp=sharing] document and the Metadata Customization section of the Admin Guide.







          

      

      

    





  

    
      
          
            
  
Admin Guide

This guide documents the functionality only available to superusers (such as “dataverseAdmin”) through the Dashboard as well as command line utilities of interest to sysadmins.

Contents:



	Dashboard
	Harvesting
	Harvesting Clients

	Harvesting Servers





	Metadata Export

	Users





	Managing Harvesting Clients
	Your Dataverse as a Metadata Harvester

	Managing Harvesting Clients

	New in Dataverse 4, vs. DVN 3





	Managing Harvesting Server and Sets
	Your Dataverse as an OAI server

	How does it work?

	OAI Sets
	Important: New SOLR schema required!





	OAI Set updates





	Metadata Customization
	Introduction

	About the metadata block TSV
	#metadataBlock properties

	#datasetField (field) properties

	#controlledVocabulary (enumerated) properties

	FieldType definitions

	displayFormat variables





	Metadata Block Setup
	Exploring Metadata Blocks

	Setting Up a Dev Environment for Testing

	Editing TSV files

	Loading TSV files into Dataverse

	#metadataBlock properties

	#datasetField (field) properties

	#controlledVocabulary (enumerated) properties

	Enabling a Metadata Block

	Updating the Solr Schema





	Reloading a Metadata Block

	Tips from the Dataverse Community

	Footnotes





	Metadata Export
	Automatic Exports

	Batch exports through the API

	Export Failures

	Downloading Metadata via GUI

	Downloading Metadata via API





	Dataverse Application Timers
	Dedicated timer server in a Dataverse server cluster

	Harvesting Timers

	Metadata Export Timer

	Known Issues





	Integrations
	Getting Data In
	Dropbox

	Open Science Framework (OSF)

	RSpace

	Open Journal Systems (OJS)





	Analysis and Computation
	Data Explorer

	TwoRavens/Zelig

	WorldMap

	Compute Button





	Discoverability
	OAI-PMH (Harvesting)

	SHARE





	Future Integrations





	Geoconnect and WorldMap
	Update “mapitlink”

	Removing Dead Explore Links





	User Administration
	Manage Users
	List Users via API





	Confirm Email

	Deleting an API Token





	Managing Datasets and Dataverses
	Dataverses
	Move a Dataverse

	Link a Dataverse

	Unlink a Dataverse

	Add Dataverse RoleAssignments to Child Dataverses





	Datasets
	Move a Dataset

	Link a Dataset

	Unlink a Dataset

	Mint new PID for a Dataset

	Send Dataset metadata to PID provider









	Solr Search Index
	Full Reindex
	Clear and Reindex
	Clearing Data from Solr

	Start Async Reindex





	Reindex in Place
	Clear Index Timestamps

	Start or Continue Async Reindex













	IP Groups
	Listing IP Groups

	Creating an IP Group

	Listing an IP Group

	Deleting an IP Group





	Monitoring
	Operating System Monitoring
	Munin





	HTTP Traffic
	Monitoring HTTP Traffic from the Client Side

	Monitoring HTTP Traffic from the Server Side

	AWStats





	Database Connection Pool used by Glassfish

	actionlogrecord

	EJB Timers





	Reporting Tools

	Maintenance

	Backups

	Troubleshooting
	Glassfish

	Deployment fails, “EJB Timer Service not available”

	Timer not working













          

      

      

    





  

    
      
          
            
  
Dashboard

Dataverse offers a dashboard of administrative tools for superusers only. If you are a logged-in superuser, you can access it by clicking your username in the navbar, and then clicking “Dashboard” from the dropdown. You can verify that you are a superuser by checking the color of your username in the navbar. If it’s red, you have the right permissions to use the Dashboard. Superusers can give other users the superuser status via User Administration.


Contents:


	Harvesting


	Harvesting Clients


	Harvesting Servers






	Metadata Export


	Users







Harvesting


Harvesting Clients

This dashboard tool allows you to set up which other repositories your Dataverse installation harvests metadata records from. You can see a list of harvesting clients and add, edit, or remove them. See the Managing Harvesting Clients section for more details.




Harvesting Servers

This dashboard tool allows you to define sets of local datasets to make available to remote harvesting clients. You can see a list of sets and add, edit, or remove them. See the Managing Harvesting Server and Sets section for more details.






Metadata Export

This part of the Dashboard is simply a reminder message that metadata export happens through the Harvard Dataverse API. See the Metadata Export section and the Native API section of the API Guide for more details.




Users

This dashboard tool allows you to search a list of all users of your Dataverse installation. You can remove roles from user accounts and assign or remove superuser status. See the User Administration section for more details.







          

      

      

    





  

    
      
          
            
  
Managing Harvesting Clients


Contents:


	Your Dataverse as a Metadata Harvester


	Managing Harvesting Clients


	New in Dataverse 4, vs. DVN 3







Your Dataverse as a Metadata Harvester

Harvesting is a process of exchanging metadata with other repositories. As a harvesting client, your Dataverse can
gather metadata records from remote sources. These can be other Dataverse instances or other archives that support OAI-PMH, the standard harvesting protocol. Harvested metadata records will be indexed and made searchable by your users. Clicking on a harvested dataset in the search results takes the user to the original repository. Harvested datasets cannot be edited in your Dataverse installation.

Harvested records can be kept in sync with the original repository through scheduled incremental updates, daily or weekly.
Alternatively, harvests can be run on demand, by the Admin.




Managing Harvesting Clients

To start harvesting metadata from a remote OAI repository, you first create and configure a Harvesting Client.

Clients are managed on the “Harvesting Clients” page accessible via the Dashboard. Click on the Add Client button to get started.

The process of creating a new, or editing an existing client, is largely self-explanatory. It is split into logical steps, in a way that allows the user to go back and correct the entries made earlier. The process is interactive and guidance text is provided. For example, the user is required to enter the URL of the remote OAI server. When they click Next, the application will try to establish a connection to the server in order to verify that it is working, and to obtain the information about the sets of metadata records and the metadata formats it supports. The choices offered to the user on the next page will be based on this extra information. If the application fails to establish a connection to the remote archive at the address specified, or if an invalid response is received, the user is given an opportunity to check and correct the URL they entered.




New in Dataverse 4, vs. DVN 3


	Note that when creating a client you will need to select an existing local dataverse to host the datasets harvested. In DVN 3, a dedicated “harvesting dataverse” would be created specifically for each remote harvesting source. In Dataverse 4, harvested content can be added to any dataverse. This means that a dataverse can now contain datasets harvested from multiple sources and/or a mix of local and harvested datasets.


	An extra “Archive Type” pull down menu is added to the Create and Edit dialogs. This setting, selected from the choices such as “Dataverse 4”, “DVN, v2-3”, “Generic OAI”, etc. is used to properly format the harvested metadata as they are shown in the search results. It is very important to select the type that best describes this remote server, as failure to do so can result in information missing from the search results, and, a failure to redirect the user to the archival source of the data!

It is, however, very easy to correct a mistake like this. For example, let’s say you have created a client to harvest from the XYZ Institute and specified the archive type as “Dataverse 4”. You have been able to harvest content, the datasets appear in search result, but clicking on them results in a “Page Not Found” error on the remote site. At which point you realize that the XYZ Institute admins have not yet upgraded to Dataverse 4, still running DVN v3.1.2 instead. All you need to do is go back to the Harvesting Clients page, and change the setting to “DVN, v2-3”. This will fix the redirects without having to re-harvest the datasets.



	Another extra entry, “Archive Description”, is added to the Edit Harvesting Client dialog. This description appears at the bottom of each search result card for a harvested dataset or datafile. By default, this text reads “This Dataset is harvested from our partners. Clicking the link will take you directly to the archival source of the data.” Here it can be customized to be more descriptive, for example, “This Dataset is harvested from our partners at the XYZ Institute…”










          

      

      

    





  

    
      
          
            
  
Managing Harvesting Server and Sets


Contents:


	Your Dataverse as an OAI server


	How does it work?


	OAI Sets


	Important: New SOLR schema required!






	OAI Set updates







Your Dataverse as an OAI server

As a harvesting server, your Dataverse can make some of the local
dataset metadata available to remote harvesting clients. These can be
other Dataverse instances, or any other clients that support OAI-PMH
harvesting protocol. Note that the terms “Harvesting Server” and “OAI
Server” are being used interchangeably throughout this guide and in
the inline help text.




How does it work?

Only the published, unrestricted datasets in your Dataverse can
be made harvestable. Remote clients normally keep their records in sync
through scheduled incremental updates, daily or weekly, thus
minimizing the load on your server. Note that it is only the metadata
that are harvested. Remote harvesters will generally not attempt to
download the data files associated with the harvested datasets.

Harvesting server can be enabled or disabled on the “Harvesting
Server” page accessible via the Dashboard. Harvesting server is by
default disabled on a brand new, “out of the box” Dataverse.




OAI Sets

Once the service is enabled, you define collections of local datasets
that will be available to remote harvesters as OAI Sets. Once again,
the terms “OAI Set” and “Harvesting Set” are used
interchangeably. Sets are defined by search queries. Any such query
that finds any number of published, local (non-harvested) datasets can
be used to create an OAI set. Sets can overlap local dataverses, and
can include as few or as many of your local datasets as you wish. A
good way to master the Dataverse search query language is to
experiment with the Advanced Search page. We also recommend that you
consult the Search API section of the Dataverse User Guide.

Once you have entered the search query and clicked Next, the number
of search results found will be shown on the next screen. This way, if
you are seeing a number that’s different from what you expected, you
can go back and try to re-define the query.

Some useful examples of search queries to define OAI sets:


	A good way to create a set that would include all your local, published datasets is to do so by the Unique Identifier authority registered to your Dataverse, for example:

dsPersistentId:"doi:1234/"

Note that double quotes must be used, since the search field value contains the colon symbol!

Note also that the search terms limiting the results to published and local datasets are added to the query automatically, so you don’t need to worry about that.



	A query to create a set to include the datasets from a specific local dataverse:

parentId:NNN

where NNN is the database id of the dataverse object (consult the Dataverse table of the SQL database used by the application to verify the database id).



	A query to find all the dataset by a certain author:

authorName:YYY

where YYY is the name.



	Complex queries can be created with multiple logical AND and OR operators. For example,

(authorName:YYY OR authorName:ZZZ) AND dsPublicationDate:NNNN



	Some further query examples:

For specific datasets using a persistentID:

(dsPersistentId:10.5000/ZZYYXX/ OR dsPersistentId:10.5000/XXYYZZ)

For all datasets within a specific ID authority:

dsPersistentId:10.5000/XXYYZZ

For all dataverses with subjects of Astronomy and Astrophysics or Earth and Environmental Sciences:

(dvSubject:"Astronomy and Astrophysics" OR dvSubject:"Earth and Environmental Sciences")

For all datasets containing the keyword “censorship”:

keywordValue:censorship






Important: New SOLR schema required!

In order to be able to define OAI sets, your SOLR server must be upgraded with the search schema that came with the Dataverse release 4.5 (or later), and all your local datasets must be re-indexed, once the new schema is installed.






OAI Set updates

Every time a new harvesting set is created, or changes are made to an
existing set, the contents of the set are automatically updated - the
Dataverse application will find the datasets defined by the query, and
attempt to run the metadata export on the ones that haven’t been
exported yet. Only the datasets for which the export has completed
successfully, and the results cached on the filesystem are included in
the OAI sets advertised to the harvesting clients!

This is in contrast to how the sets used to be managed in DVN v.3,
where sets had to be exported manually before any such changes had
effect.

Important: Note however that changes made to the actual dataset
metadata do not automatically trigger any corresponding OAI sets to
be updated immediately! For example: let’s say you have created an OAI set defined by
the search query authorName:king, that resulted in 43
dataset records. If a new dataset by the same author is added and published, this does not immediately add the extra
record to the set! It would simply be too expensive, to refresh all
the sets every time any changes to the metadata are made.

The OAI set will however be updated automatically by a scheduled metadata export job that
runs every night (at 2AM, by default). This export timer is created
and activated automatically every time the application is deployed
or restarted. Once again, this is new in Dataverse 4, and unlike DVN
v3, where export jobs had to be scheduled and activated by the admin
user. See the “Export” section of the Admin guide, for more information on the automated metadata exports.

It is still possible however to make changes like this be immediately
reflected in the OAI server, by going to the Harvesting Server page
and clicking the “Run Export” icon next to the desired OAI set.







          

      

      

    





  

    
      
          
            
  
Metadata Customization

Dataverse has a flexible data-driven metadata system powered by “metadata blocks” that are listed in the Appendix section of the User Guide. In this section we explain the customization options.


Contents:


	Introduction


	About the metadata block TSV


	#metadataBlock properties


	#datasetField (field) properties


	#controlledVocabulary (enumerated) properties


	FieldType definitions


	displayFormat variables






	Metadata Block Setup


	Exploring Metadata Blocks


	Setting Up a Dev Environment for Testing


	Editing TSV files


	Loading TSV files into Dataverse


	#metadataBlock properties


	#datasetField (field) properties


	#controlledVocabulary (enumerated) properties


	Enabling a Metadata Block


	Updating the Solr Schema






	Reloading a Metadata Block


	Tips from the Dataverse Community


	Footnotes







Introduction

Before you embark on customizing metadata in Dataverse you should make sure you are aware of the modest amount of customization that is available with the Dataverse web interface. It’s possible to hide fields and make field required by clicking “Edit” at the dataverse level, clicking “General Information” and making adjustments under “Metadata Fields” as described in the context of dataset templates in the Dataverse Management section of the User Guide.

Much more customization of metadata is possible, but this is an advanced topic so feedback on what is written below is very welcome. The possibilities for customization include:


	Editing and adding metadata fields


	Editing and adding instructional text (field label tooltips and text
box watermarks)


	Editing and adding controlled vocabularies


	Changing which fields depositors must use in order to save datasets (see also “dataset templates” in the Dataverse Management section of the User Guide.)


	Changing how saved metadata values are displayed in the UI




Generally speaking it is safer to create your own custom metadata block rather than editing metadata blocks that ship with Dataverse, because changes to these blocks may be made in future releases of Dataverse. If you’d like to make improvements to any of the metadata blocks shipped with Dataverse, please open an issue at https://github.com/IQSS/dataverse/issues so it can be discussed before a pull request is made. Please note that the metadata blocks shipped with Dataverse are based on standards (e.g. DDI for social science) and you can learn more about these standards in the Appendix section of the User Guide. If you have developed your own custom metadata block that you think may be of interest to the Dataverse community, please create an issue and consider making a pull request as described in the Version Control section of the Developer Guide.

In Dataverse 4, custom metadata are no longer defined as individual
fields, as they were in Dataverse Network (DVN) 3.x, but in metadata blocks.
Dataverse 4 ships with a citation metadata block, which includes
mandatory fields needed for assigning persistent IDs to datasets, and
domain specific metadata blocks. For a complete list, see the
Appendix section of the User Guide.

Definitions of these blocks are loaded into a Dataverse installation in
tab-separated value (TSV). 1, 2 While it is technically
possible to define more than one metadata block in a TSV file, it is
good organizational practice to define only one in each file.

The metadata block TSVs shipped with Dataverse are in this folder in
the Dataverse github
repo [https://github.com/IQSS/dataverse/tree/develop/scripts/api/data/metadatablocks] and the corresponding ResourceBundle property files are here [https://github.com/IQSS/dataverse/tree/develop/src/main/java].
Human-readable copies are available in this Google Sheets
document [https://docs.google.com/spreadsheets/d/13HP-jI_cwLDHBetn9UKTREPJ_F4iHdAvhjmlvmYdSSw/edit#gid=0] but they tend to get out of sync with the TSV files, which should be considered authoritative. The Dataverse installation process operates on the TSVs, not the Google spreadsheet.




About the metadata block TSV

Here we list and describe the purposes of each section and property of
the metadata block TSV.


	metadataBlock


	Purpose: Represents the metadata block being defined.


	Cardinality:


	0 or more per Dataverse


	1 per Metadata Block definition










	datasetField


	Purpose: Each entry represents a metadata field to be defined
within a metadata block.


	Cardinality: 1 or more per metadataBlock






	controlledVocabulary


	Purpose: Each entry enumerates an allowed value for a given
datasetField.


	Cardinality: zero or more per datasetField








Each of the three main sections own sets of properties:


#metadataBlock properties








	Property

	Purpose

	Allowed values and
restrictions



	name

	A user-definable
string used to
identify a
#metadataBlock

	• No spaces or
punctuation,
except underscore.

• By convention,
should start with
a letter, and use
lower camel
case 3

• Must not collide
with a field of
the same name in
the same or any
other
#datasetField
definition,
including metadata
blocks defined
elsewhere. 4




	dataverseAlias

	If specified, this
metadata block will
be available only to
the dataverse
designated here by
its alias and to
children of that
dataverse.

	Free text. For an
example, see
custom_hbgdki.tsv.



	displayName

	Acts as a brief label
for display related
to this
#metadataBlock.

	Should be relatively
brief. The limit is
256 character, but
very long names might
cause display
problems.









#datasetField (field) properties








	Property

	Purpose

	Allowed values and
restrictions



	name

	A user-definable
string used to
identify a
#datasetField. Maps
directly to field
name used by Solr.

	• (from
DatasetFieldType.java)
The internal
DDI-like name, no
spaces, etc.

• (from Solr) Field
names should
consist of
alphanumeric or
underscore
characters only
and not start with
a digit. This is
not currently
strictly enforced,
but other field
names will not
have first class
support from all
components and
back compatibility
is not guaranteed.
Names with both
leading and
trailing
underscores (e.g.
_version_) are
reserved.

• Must not collide
with a field of
the same same name
in another
#metadataBlock
definition or any
name already
included as a
field in the Solr
index.




	title

	Acts as a brief label
for display related
to this
#datasetField.

	Should be relatively
brief.



	description

	Used to provide a
description of the
field.

	Free text



	watermark

	A string to initially
display in a field as
a prompt for what the
user should enter.

	Free text



	fieldType

	Defines the type of
content that the
field, if not empty,
is meant to contain.

	
• none

• date

• email

• text

• textbox

• url

• int

• float

• See below for

fieldtype definitions






	displayOrder

	Controls the sequence
in which the fields
are displayed, both
for input and
presentation.

	Non-negative integer.



	displayFormat

	Controls how the
content is displayed
for presentation (not
entry). The value of
this field may
contain one or more
special variables
(enumerated below).
HTML tags, likely in
conjunction with one
or more of these
values, may be used
to control the
display of content in
the web UI.

	See below for
displayFormat
variables



	advancedSearchField

	Specify whether this
field is available in
advanced search.

	TRUE (available) or
FALSE (not available)



	allowControlledVocabulary

	Specify whether the
possible values of
this field are
determined by values
in the
#controlledVocabulary
section.

	TRUE (controlled) or
FALSE (not
controlled)



	allowmultiples

	Specify whether this
field is repeatable.

	TRUE (repeatable) or
FALSE (not
repeatable)



	facetable

	Specify whether the
field is facetable
(i.e., if the
expected values for
this field are
themselves useful
search terms for this
field). If a field is
“facetable” (able to
be faceted on), it
appears under
“Browse/Search
Facets” when you edit
“General Information”
for a dataverse.
Setting this value to
TRUE generally makes
sense for enumerated
or controlled
vocabulary fields,
fields representing
identifiers (IDs,
names, email
addresses), and other
fields that are
likely to share
values across
entries. It is less
likely to make sense
for fields containing
descriptions,
floating point
numbers, and other
values that are
likely to be unique.

	TRUE (controlled) or
FALSE (not
controlled)



	displayoncreate 5

	Designate fields that
should display during
the creation of a new
dataset, even before
the dataset is saved.
Fields not so
designated will not
be displayed until
the dataset has been
saved.

	TRUE (display during
creation) or FALSE
(don’t display during
creation)



	required

	Specify whether or
not the field is
required. This means
that at least one
instance of the field
must be present. More
than one field may be
allowed, depending on
the value of
allowmultiples.

	TRUE (required) or
FALSE (optional)



	parent

	For subfields,
specify the name of
the parent or
containing field.

	• Must not result in
a cyclical
reference.

• Must reference an
existing field in
the same
#metadataBlock.




	metadatablock_id

	Specify the name of
the #metadataBlock
that contains this
field.

	• Must reference an
existing
#metadataBlock.

• As a best
practice, the
value should
reference the
#metadataBlock in
the current
definition
(it is technically
possible to
reference another
existing metadata
block.)










#controlledVocabulary (enumerated) properties








	Property

	Purpose

	Allowed values and
restrictions



	DatasetField

	Specifies the
#datasetField to which
this entry applies.

	Must reference an
existing
#datasetField.
As a best practice,
the value should
reference a
#datasetField in the
current metadata
block definition. (It
is technically
possible to reference
an existing
#datasetField from
another metadata
block.)



	Value

	A short display
string, representing
an enumerated value
for this field. If
the identifier
property is empty,
this value is used as
the identifier.

	Free text



	identifier

	A string used to
encode the selected
enumerated value of a
field. If this
property is empty,
the value of the
“Value” field is used
as the identifier.

	Free text



	displayOrder

	Control the order in
which the enumerated
values are displayed
for selection.

	Non-negative integer.









FieldType definitions







	Fieldtype

	Definition



	none

	Used for compound fields, in which
case the parent field would have
no value and display no data
entry control.



	date

	A date, expressed in one of three
resolutions of the form
YYYY-MM-DD, YYYY-MM, or YYYY.



	email

	A valid email address. Not
indexed for privacy reasons.



	text

	Any text other than newlines may
be entered into this field.



	textbox

	Any text may be entered. For
input, Dataverse presents a
multi-line area that accepts
newlines. While any HTML is
permitted, only a subset of HTML
tags will be rendered in the UI.
A list of supported tags is
included in the Dataverse User
Guide [http://guides.dataverse.org/en/latest/user/dataset-management.html#supported-html-fields]
.



	url

	If not empty, field must contain
a valid URL.



	int

	An integer value destined for a
numeric field.



	float

	A floating point number destined
for a numeric field.









displayFormat variables

These are common ways to use the displayFormat to control how values are displayed in the UI. This list is not exhaustive.







	Variable

	Description



	(blank)

	The displayFormat is left blank
for primitive fields (e.g.
subtitle) and fields that do not
take values (e.g. author), since
displayFormats do not work for
these fields.



	#VALUE

	The value of the field (instance
level).



	#NAME

	The name of the field (class
level).



	#EMAIL

	For displaying emails.



	<a href=”#VALUE”>#VALUE</a>

	For displaying the value as a
link (if the value entered is a
link).



	<a href=’URL/#VALUE’>#VALUE</a>

	For displaying the value as a
link, with the value included in
the URL (e.g. if URL is
http://emsearch.rutgers.edu/atlas/#VALUE_summary.html,
and the value entered is 1001,
the field is displayed as
1001 [http://emsearch.rutgers.edu/atlas/1001_summary.html]
(hyperlinked to
http://emsearch.rutgers.edu/atlas
/1001_summary.html)).



	<img src=”#VALUE” alt=”#NAME”
class=”metadata-logo”/><br/>

	For displaying the image of an
entered image URL (used to
display images in the producer
and distributor logos metadata
fields).



	#VALUE:

- #VALUE:

(#VALUE)


	Appends and/or prepends
characters to the value of the
field. e.g. if the displayFormat
for the distributorAffiliation is
(#VALUE) (wrapped with parens)
and the value entered
is University of North
Carolina, the field is displayed
in the UI as (University of
North Carolina).



	;

:

,


	Displays the character (e.g.
semicolon, comma) between the
values of fields within
compound fields. For example,
if the displayFormat for the
compound field “series” is a
colon, and if the value
entered for seriesName is
IMPs and for
seriesInformation is A
collection of NMR data, the
compound field is displayed in
the UI as IMPs: A
collection of NMR data.











Metadata Block Setup

Now that you understand the TSV format used for metadata blocks, the next step is to attempt to make improvements to existing metadata blocks or create entirely new metadata blocks. For either task, you should have a Dataverse environment set up for testing where you can drop the database frequently while you make edits to TSV files. Once you have tested your TSV files, you should consider making a pull request to contribute your improvement back to the community.


Exploring Metadata Blocks

In addition to studying the TSV files themselves you might find the following highly experimental and subject-to-change API endpoints useful to understand the metadata blocks that have already been loaded into your installation of Dataverse:

You can get a dump of metadata fields (yes, the output is odd, please open a issue) like this:

curl http://localhost:8080/api/admin/datasetfield

To see details about an individual field such as “title” in the example below:

curl http://localhost:8080/api/admin/datasetfield/title




Setting Up a Dev Environment for Testing

You have several options for setting up a dev environment for testing metadata block changes:


	Vagrant: See the Tools section of the Dev Guide.


	docker-aio: See https://github.com/IQSS/dataverse/tree/develop/conf/docker-aio


	AWS deployment: See the Deployment section of the Dev Guide.


	Full dev environment: See the Development Environment section of the Dev Guide.




To get a clean environment in Vagrant, you’ll be running vagrant destroy. In Docker, you’ll use docker rm. For a full dev environment or AWS installation, you might find rebuild and related scripts at scripts/deploy/phoenix.dataverse.org useful.




Editing TSV files

Early in Dataverse 4 development metadata blocks were edited in the Google spreadsheet mentioned above and then exported in TSV format. This worked fine when there was only one person editing the Google spreadsheet but now that contributions are coming in from all over, the TSV files are edited directly. We are somewhat painfully aware that another format such as XML might make more sense these days. Please see https://github.com/IQSS/dataverse/issues/4451 for a discussion of non-TSV formats.

Please note that metadata fields share a common namespace so they must be unique. The following curl command will print list of metadata fields already available in the system:

curl http://localhost:8080/api/admin/index/solr/schema

We’ll use this command again below to update the Solr schema to accomodate metadata fields we’ve added.




Loading TSV files into Dataverse

A number of TSV files are loaded into Dataverse on every new installation, becoming the metadata blocks you see in the UI. For the list of metadata blocks that are included with Dataverse out of the box, see the Appendix section of the User Guide.

Along with TSV file, there are corresponding ResourceBundle property files with key=value pair here [https://github.com/IQSS/dataverse/tree/develop/src/main/java].  To add other language files, see the Configuration for dataverse.lang.directory JVM Options section, and add a file, for example: “citation_lang.properties” to the path you specified for the dataverse.lang.directory JVM option, and then restart Glassfish.

If you are improving an existing metadata block, the Dataverse installation process will load the TSV for you, assuming you edited the TSV file in place. The TSV file for the Citation metadata block, for example, can be found at scripts/api/data/metadatablocks/citation.tsv.
If any of the below mentioned property values are changed, corresponsing ResourceBundle property file has to be edited and stored under dataverse.lang.directory location


	name, displayName property under #metadataBlock


	name, title, description, watermark properties under #datasetfield


	DatasetField, Value property under #controlledVocabulary




If you are creating a new custom metadata block (hopefully with the idea of contributing it back to the community if you feel like it would provide value to others), the Dataverse installation process won’t know about your new TSV file so you must load it manually. The script that loads the TSV files into the system is scripts/api/setup-datasetfields.sh and contains a series of curl commands. Here’s an example of the necessary curl command with the new custom metadata block in the “/tmp” directory.

curl http://localhost:8080/api/admin/datasetfield/load -H "Content-type: text/tab-separated-values" -X POST --upload-file /tmp/new-metadata-block.tsv

To create a new ResourceBundle, here are the steps to generate key=value pair for the three main sections:




#metadataBlock properties

metadatablock.name=(the value of name property from #metadatablock)

metadatablock.displayName=(the value of displayName property from #metadatablock)

example:

metadatablock.name=citation

metadatablock.displayName=Citation Metadata




#datasetField (field) properties

datasetfieldtype.(the value of name property from #datasetField).title=(the value of title property from #datasetField)

datasetfieldtype.(the value of name property from #datasetField).description=(the value of description property from #datasetField)

datasetfieldtype.(the value of name property from #datasetField).watermark=(the value of watermark property from #datasetField)

example:

datasetfieldtype.title.title=Title

datasetfieldtype.title.description=Full title by which the Dataset is known.

datasetfieldtype.title.watermark=Enter title…




#controlledVocabulary (enumerated) properties

controlledvocabulary.(the value of DatasetField property from #controlledVocabulary).(the value of Value property from #controlledVocabulary)=(the value of Value property from #controlledVocabulary)

Since the Value property from #controlledVocabulary is free text, while creating the key, it has to be converted to lowercase, replace space with underscore, and strip accents.

example:

controlledvocabulary.subject.agricultural_sciences=Agricultural Sciences

controlledvocabulary.language.marathi_(marathi)=Marathi (Maru0101u1E6Dhu012B)




Enabling a Metadata Block

Running a curl command like “load” example above should make the new custom metadata block available within the system but in order to start using the fields you must either enable it from the GUI (see “General Information” in the Dataverse Management section of the User Guide) or by running a curl command like the one below using a superuser API token. In the example below we are enabling the “journal” and “geospatial” metadata blocks for the root dataverse:

curl -H "X-Dataverse-key:$API_TOKEN" -X POST -H "Content-type:application/json" -d "[\"journal\",\"geospatial\"]" http://localhost:8080/api/dataverses/:root/metadatablocks




Updating the Solr Schema

Once you have enabled a new metadata block you should be able to see the new fields in the GUI but before you can save the dataset, you must add additional fields to your Solr schema. You should run the following curl command to have Dataverse output the “field name” and “copyField” elements for all the metadata fields that have been loaded into Dataverse:

curl http://localhost:8080/api/admin/index/solr/schema

See the Prerequisites section of the Installation Guide for a suggested location on disk for the Solr schema file.

Please note that if you are going to make a pull request updating conf/solr/7.3.0/schema.xml with fields you have added, you should first load all the custom metadata blocks in scripts/api/data/metadatablocks (including ones you don’t care about) to create a complete list of fields.






Reloading a Metadata Block

As mentioned above, changes to metadata blocks that ship with Dataverse will be made over time to improve them and release notes will sometimes instruct you to reload an existing metadata block. The syntax for reloading is the same as reloading. Here’s an example with the “citation” metadata block:

curl http://localhost:8080/api/admin/datasetfield/load -H "Content-type: text/tab-separated-values" -X POST --upload-file --upload-file citation.tsv

Great care must be taken when reloading a metadata block. Matching is done on field names (or identifiers and then names in the case of controlled vocabulary values) so it’s easy to accidentally create duplicate fields.

The ability to reload metadata blocks means that SQL update scripts don’t need to be written for these changes. See also the SQL Upgrade Scripts section of the Dev Guide.




Tips from the Dataverse Community

If there are tips that you feel are omitted from this document, please open an issue at https://github.com/IQSS/dataverse/issues and consider making a pull request to make improvements. You can find this document at https://github.com/IQSS/dataverse/blob/develop/doc/sphinx-guides/source/admin/metadatacustomization.rst

Alternatively, you are welcome to request “edit” access to this “Tips for Dataverse metadata blocks from the community” Google doc: https://docs.google.com/document/d/1XpblRw0v0SvV-Bq6njlN96WyHJ7tqG0WWejqBdl7hE0/edit?usp=sharing

The thinking is that the tips can become issues and the issues can eventually be worked on as features to improve the Dataverse metadata system.




Footnotes


	1

	https://www.iana.org/assignments/media-types/text/tab-separated-values



	2

	Although the structure of the data, as you’ll see below, violates the
“Each record must have the same number of fields” tenet of TSV



	3

	https://en.wikipedia.org/wiki/CamelCase



	4

	These field names are added to the Solr schema.xml and cannot be
duplicated. See “Editing TSV files” for how to check for duplication.



	5

	“displayoncreate” was “showabovefold” in Dataverse versions before 4.3.1 (see
#3073 [https://github.com/IQSS/dataverse/issues/3073]) but parsing is
done based on column order rather than name so this only matters to the
person reading the TSV file.











          

      

      

    





  

    
      
          
            
  
Metadata Export


Contents:


	Automatic Exports


	Batch exports through the API


	Export Failures


	Downloading Metadata via GUI


	Downloading Metadata via API







Automatic Exports

Publishing a dataset automatically starts a metadata export job, that will run in the background, asynchronously. Once completed, it will make the dataset metadata exported and cached in all the supported formats:


	Dublin Core


	Data Documentation Initiative (DDI)


	Schema.org JSON-LD


	native JSON (Dataverse-specific)




A scheduled timer job that runs nightly will attempt to export any published datasets that for whatever reason haven’t been exported yet. This timer is activated automatically on the deployment, or restart, of the application. So, again, no need to start or configure it manually. (See the “Application Timers” section of this guide for more information)




Batch exports through the API

In addition to the automated exports, a Dataverse admin can start a batch job through the API. The following 2 API calls are provided:

/api/admin/metadata/exportAll

/api/admin/metadata/reExportAll

The former will attempt to export all the published, local (non-harvested) datasets that haven’t been exported yet.
The latter will force a re-export of every published, local dataset, regardless of whether it has already been exported or not.

Note, that creating, modifying, or re-exporting an OAI set will also attempt to export all the unexported datasets found in the set.




Export Failures

An export batch job, whether started via the API, or by the application timer, will leave a detailed log in your configured logs directory. This is the same location where your main Glassfish server.log is found. The name of the log file is export_[timestamp].log - for example, export_2016-08-23T03-35-23.log. The log will contain the numbers of datasets processed successfully and those for which metadata export failed, with some information on the failures detected. Please attach this log file if you need to contact Dataverse support about metadata export problems.




Downloading Metadata via GUI

The Dataset + File Management section of the User Guide explains how end users can download the metadata formats above from the Dataverse GUI.




Downloading Metadata via API

The Native API section of the API Guide explains how end users can download the metadata formats above via API.







          

      

      

    





  

    
      
          
            
  
Dataverse Application Timers

Dataverse uses timers to automatically run scheduled Harvest and Metadata export jobs.


Contents:


	Dedicated timer server in a Dataverse server cluster


	Harvesting Timers


	Metadata Export Timer


	Known Issues







Dedicated timer server in a Dataverse server cluster

When running a Dataverse cluster - i.e. multiple Dataverse application
servers talking to the same database - only one of them must act
as the dedicated timer server. This is to avoid starting conflicting
batch jobs on multiple nodes at the same time.

This does not affect a single-server installation. So you can safely skip this section unless you are running a multi-server cluster.

The following JVM option instructs the application to act as the dedicated timer server:

-Ddataverse.timerServer=true

IMPORTANT: Note that this option is automatically set by the Dataverse installer script. That means that when configuring a multi-server cluster, it will be the responsibility of the installer to remove the option from the domain.xml of every node except the one intended to be the timer server. We also recommend that the following entry in the domain.xml: <ejb-timer-service timer-datasource="jdbc/VDCNetDS"> is changed back to <ejb-timer-service> on all the non-timer server nodes. Similarly, this option is automatically set by the installer script. Changing it back to the default setting on a server that doesn’t need to run the timer will prevent a potential race condition, where multiple servers try to get a lock on the timer database.

Note that for the timer to work, the version of the PostgreSQL JDBC driver your instance is using must match the version of your PostgreSQL database. See the ‘Timer not working’ section of the Troubleshooting guide.




Harvesting Timers

These timers are created when scheduled harvesting is enabled by a local admin user (via the “Manage Harvesting Clients” page).

In a multi-node cluster, all these timers will be created on the dedicated timer node (and not necessarily on the node where the harvesting clients were created and/or saved).

A timer will be automatically removed when a harvesting client with an active schedule is deleted, or if the schedule is turned off for an existing client.




Metadata Export Timer

This timer is created automatically whenever the application is deployed or restarted. There is no admin user-accessible configuration for this timer.

This timer runs a daily job that tries to export all the local, published datasets that haven’t been exported yet, in all supported metadata formats, and cache the results on the filesystem. (Note that normally an export will happen automatically whenever a dataset is published. This scheduled job is there to catch any datasets for which that export did not succeed, for one reason or another). Also, since this functionality has been added in version 4.5: if you are upgrading from a previous version, none of your datasets are exported yet. So the first time this job runs, it will attempt to export them all.

This daily job will also update all the harvestable OAI sets configured on your server, adding new and/or newly published datasets or marking deaccessioned datasets as “deleted” in the corresponding sets as needed.

This job is automatically scheduled to run at 2AM local time every night. If really necessary, it is possible (for an advanced user) to change that time by directly editing the EJB timer application table in the database.




Known Issues

We’ve received several reports of an intermittent issue where the application fails to deploy with the error message “EJB Timer Service is not available.” Please see the Troubleshooting section of this guide for a workaround.







          

      

      

    





  

    
      
          
            
  
Integrations

Now that you’ve installed Dataverse, you might want to set up some integrations with other systems. Many of these integrations are open source and are cross listed in the Apps section of the API Guide.


Contents:


	Getting Data In


	Dropbox


	Open Science Framework (OSF)


	RSpace


	Open Journal Systems (OJS)






	Analysis and Computation


	Data Explorer


	TwoRavens/Zelig


	WorldMap


	Compute Button






	Discoverability


	OAI-PMH (Harvesting)


	SHARE






	Future Integrations







Getting Data In

A variety of integrations are oriented toward making it easier for your researchers to deposit data into your installation of Dataverse.


Dropbox

If your researchers have data on Dropbox, you can make it easier for them to get it into Dataverse by setting the dataverse.dropbox.key JVM option described in the Configuration section of the Installation Guide.




Open Science Framework (OSF)

The Center for Open Science’s Open Science Framework (OSF) is an open source software project that facilitates open collaboration in science research across the lifespan of a scientific project.

For instructions on depositing data from OSF to your installation of Dataverse, your researchers can visit http://help.osf.io/m/addons/l/863978-connect-dataverse-to-a-project




RSpace

RSpace is an affordable and secure enterprise grade electronic lab notebook (ELN) for researchers to capture and organize data.

For instructions on depositing data from RSpace to your installation of Dataverse, your researchers can visit https://www.researchspace.com/help-and-support-resources/dataverse-integration/




Open Journal Systems (OJS)

Open Journal Systems (OJS) is a journal management and publishing system that has been developed by the Public Knowledge Project to expand and improve access to research.

The OJS Dataverse Plugin adds data sharing and preservation to the OJS publication process.

As of this writing only OJS 2.x is supported and instructions for getting started can be found at https://github.com/pkp/ojs/tree/ojs-stable-2_4_8/plugins/generic/dataverse

If you are interested in OJS 3.x supporting deposit from Dataverse, please leave a comment on https://github.com/pkp/pkp-lib/issues/1822






Analysis and Computation


Data Explorer

Data Explorer is a GUI which lists the variables in a tabular data file allowing searching, charting and cross tabulation analysis.

For installation instructions, see the External Tools section of the Installation Guide.




TwoRavens/Zelig

TwoRavens is a web application for tabular data exploration and statistical analysis with Zelig.

For installation instructions, see the External Tools section of the Installation Guide.




WorldMap

WorldMap helps researchers visualize and explore geospatial data by creating maps.

For installation instructions, see Geoconnect and WorldMap.




Compute Button

The “Compute” button is still highly experimental and has special requirements such as use of a Swift object store, but it is documented under “Setting up Compute” in the Configuration section of the Installation Guide.






Discoverability

Integration with DataCite [https://datacite.org] is built in to Dataverse. When datasets are published, metadata is sent to DataCite. You can futher increase the discoverability of your datasets by setting up additional integrations.


OAI-PMH (Harvesting)

Dataverse supports a protocol called OAI-PMH that facilitates harvesting datasets from one system into another. For details on harvesting, see the Managing Harvesting Server and Sets section.




SHARE

SHARE [http://www.share-research.org] is building a free, open, data set about research and scholarly activities across their life cycle. It’s possible to add and installation of Dataverse as one of the sources [https://share.osf.io/sources] they include if you contact the SHARE team.






Future Integrations

The Dataverse roadmap [https://dataverse.org/goals-roadmap-and-releases] is a good place to see integrations that the core Dataverse team is working on.

The Dev Efforts by the Dataverse Community [https://docs.google.com/spreadsheets/d/1pl9U0_CtWQ3oz6ZllvSHeyB0EG1M_vZEC_aZ7hREnhE/edit?usp=sharing] spreadsheet is the best way to track integrations that are being worked on by the Dataverse community.

Please help us keep this page up to date making a pull request! To get started, see the Documentation section of the Developer Guide.







          

      

      

    





  

    
      
          
            
  
Geoconnect and WorldMap

One of the optional components listed under “Architecture and Components” in the Preparation section of the Installation Guide is Geoconnect [https://github.com/IQSS/geoconnect], a piece of middleware that allows Dataverse users to create maps in WorldMap [http://worldmap.harvard.edu] based on geospatial data stored in Dataverse. For more details on the feature from the user perspective, see the WorldMap: Geospatial Data Exploration section of the User Guide.


Contents:


	Update “mapitlink”


	Removing Dead Explore Links







Update “mapitlink”

SQL commands to point a Dataverse installation at different Geoconnect servers:

Geoconnect Production geoconnect.datascience.iq.harvard.edu

update worldmapauth_tokentype set mapitlink = 'https://geoconnect.datascience.iq.harvard.edu/shapefile/map-it', hostname='geoconnect.datascience.iq.harvard.edu' where name = 'GEOCONNECT';





Heroku Test geoconnect-dev.herokuapp.com

update worldmapauth_tokentype set mapitlink = 'https://geoconnect-dev.herokuapp.com/shapefile/map-it', hostname='geoconnect-dev.herokuapp.com' where name = 'GEOCONNECT';





View Current Settings

SELECT * from worldmapauth_tokentype;








Removing Dead Explore Links

After a map has been created in WorldMap (assuming all the setup has been done), an “Explore” button will appear next to the name of the file in Dataverse. The “Explore” button should open the map in WorldMap. In rare occasions, the map has been deleted on the WorldMap side such that the “Explore” button goes nowhere, resulting in a dead link, a 404.

Functionality has been added on the Dataverse side to iterate through all the maps Dataverse knows about (stored in the maplayermetadata database table) and to check for the existence of each map in WorldMap. The status code returned from WorldMap (200, 404, etc.) is recorded in Dataverse along with a timestamp of when the check was performed. To perform this check, you can execute the following curl command:

curl -X POST http://localhost:8080/api/admin/geoconnect/mapLayerMetadatas/check

The output above will contain the layerLink being checked as well as the HTTP response status code (200, 404, etc.) in the lastVerifiedStatus field. 200 means OK and 404 means not found. 500 might indicate that the map is only temporarily unavailable. The lastVerifiedStatus and lastVerifiedTime will be persisted to the maplayermetadata database table.

Armed with this information about WorldMap returning a 404 for a map, you may want to delete any record of the map on the Dataverse side so that the “Explore” button goes away (and so that thumbnail files are cleaned up). To accomplish this, use the following curl command, substituting the id of the file:

curl -H "X-Dataverse-key: $API_TOKEN" -X DELETE http://localhost:8080/api/files/{file_id}/map

End users can also run the DELETE command above (if they have permission to edit the dataset) but it’s more likely that the sysadmin reading this guide will run it for them. It is recommended that you add the “check” command above to cron so that Dataverse periodically checks on the status of maps in WorldMap. In addition to the “check all maps” command above, you can also check an individual map with the following curl command, substituting the id of the row from the maplayermetadata table:

curl -X POST http://localhost:8080/api/admin/geoconnect/mapLayerMetadatas/check/{id}







          

      

      

    





  

    
      
          
            
  
User Administration

This section focuses on user administration tools and tasks.


Contents:


	Manage Users


	List Users via API






	Confirm Email


	Deleting an API Token







Manage Users

The Manage Users table gives the network administrator a list of all user accounts in table form. You can access it by clicking the “Manage Users” button on the Dashboard, which is linked from the header of all Dataverse pages (if you’re logged in as an administrator). It lists username, full name, email address, affiliation, the authentication method they use, the roles their account has been granted, and whether or not they have Superuser status.

Users are listed alphabetically by username. The search bar above the table allows you to search for a specific user. It performs a right-truncated wildcard search of the Username, Name, and Email columns. This means, if you search “baseba” then it will search those three columns for any string of text that begins with “baseba”, e.g. “baseball” or “baseballfan”.

If you would like to assign or remove a user’s Superuser status, then you can do so by checking or unchecking their checkbox under the “Superuser” column.

If you would like to remove all roles/permissions from a user’s account (in the event of their leaving your organization, for example) then you can do so by clicking the “Remove All” button under the Roles column. This will keep the user’s account active, but will revert it to put the account on the level of a default user with default permissions.


List Users via API

There are two ways to list users via API. If you have relatively few users, you can get them all as a dump with this command with a superuser API token:

curl -H "X-Dataverse-key: $API_TOKEN" http://localhost:8080/api/admin/authenticatedUsers





If you have many users and want to be able to search and paginate through the results, use the command below with a superuser API token:

curl -H "X-Dataverse-key: $API_TOKEN" http://localhost:8080/api/admin/list-users





With the list-users form you can include the following optional query parameters:


	searchTerm A string that matches the beginning of a user identifier, first name, last name or email address.


	itemsPerPage The number of detailed results to return.  The default is 25.  This number has no limit. e.g. You could set it to 1000 to return 1,000 results


	selectedPage The page of results to return.  The default is 1.









Confirm Email

Dataverse encourages builtin/local users to verify their email address upon signup or email change so that sysadmins can be assured that users can be contacted.

The app will send a standard welcome email with a URL the user can click, which, when activated, will store a lastconfirmed timestamp in the authenticateduser table of the database. Any time this is “null” for a user (immediately after signup and/or changing of their Dataverse email address), their current email on file is considered to not be verified. The link that is sent expires after a time (the default is 24 hours), but this is configurable by a superuser via the :MinutesUntilConfirmEmailTokenExpires config option.

Should users’ URL token expire, they will see a “Verify Email” button on the account information page to send another URL.

Sysadmins can determine which users have verified their email addresses by looking for the presence of the value emailLastConfirmed in the JSON output from listing users (see the “Admin” section of the Native API). As mentioned in the Account Creation + Management section of the User Guide, the email addresses for Shibboleth users are re-confirmed on every login.




Deleting an API Token

If an API token is compromised it should be deleted. Users can generate a new one for themselves as explained in the Account Creation + Management section of the User Guide, but you may want to preemptively delete tokens from the database.

Using the API token 7ae33670-be21-491d-a244-008149856437 as an example:

delete from apitoken where tokenstring = '7ae33670-be21-491d-a244-008149856437';

You should expect the output DELETE 1 after issuing the command above.







          

      

      

    





  

    
      
          
            
  
Managing Datasets and Dataverses


Contents:


	Dataverses


	Move a Dataverse


	Link a Dataverse


	Unlink a Dataverse


	Add Dataverse RoleAssignments to Child Dataverses






	Datasets


	Move a Dataset


	Link a Dataset


	Unlink a Dataset


	Mint new PID for a Dataset


	Send Dataset metadata to PID provider











Dataverses


Move a Dataverse

Moves a dataverse whose id is passed to a new dataverse whose id is passed. The dataverse alias also may be used instead of the id. If the moved dataverse has a guestbook, template, metadata block, link, or featured dataverse that is not compatible with the destination dataverse, you will be informed and given the option to force the move and remove the association. Only accessible to superusers.

curl -H "X-Dataverse-key: $API_TOKEN" -X POST http://$SERVER/api/dataverses/$id/move/$destination-id








Link a Dataverse

Creates a link between a dataverse and another dataverse (see the Linked Dataverses + Linked Datasets section of the Dataverse Management guide for more information). Only accessible to superusers.

curl -H "X-Dataverse-key: $API_TOKEN" -X PUT http://$SERVER/api/dataverses/$linked-dataverse-alias/link/$linking-dataverse-alias








Unlink a Dataverse

Removes a link between a dataverse and another dataverse. Only accessible to superusers.

curl -H "X-Dataverse-key: $API_TOKEN" -X DELETE http://$SERVER/api/dataverses/$linked-dataverse-alias/deleteLink/$linking-dataverse-alias








Add Dataverse RoleAssignments to Child Dataverses

Recursively assigns the users and groups having a role(s),that are in the set configured to be inheritable via the :InheritParentRoleAssignments setting, on a specified dataverse to have the same role assignments on all of the dataverses that have been created within it. The response indicates success or failure and lists the individuals/groups and dataverses involved in the update. Only accessible to superusers.

curl -H "X-Dataverse-key: $API_TOKEN" http://$SERVER/api/admin/dataverse/$dataverse-alias//addRoleAssignmentsToChildren










Datasets


Move a Dataset

Moves a dataset whose id is passed to a dataverse whose alias is passed. If the moved dataset has a guestbook or a dataverse link that is not compatible with the destination dataverse, you will be informed and given the option to force the move and remove the guestbook or link. Only accessible to users with permission to publish the dataset in the original and destination dataverse.

curl -H "X-Dataverse-key: $API_TOKEN" -X POST http://$SERVER/api/datasets/$id/move/$alias








Link a Dataset

Creates a link between a dataset and a dataverse (see the Linked Dataverses + Linked Datasets section of the Dataverse Management guide for more information).

curl -H "X-Dataverse-key: $API_TOKEN" -X PUT http://$SERVER/api/datasets/$linked-dataset-id/link/$linking-dataverse-alias








Unlink a Dataset

Removes a link between a dataset and a dataverse. Only accessible to superusers.

curl -H "X-Dataverse-key: $API_TOKEN" -X DELETE http://$SERVER/api/datasets/$linked-dataset-id/deleteLink/$linking-dataverse-alias








Mint new PID for a Dataset

Mints a new identifier for a dataset previously registered with a handle. Only accessible to superusers.

curl -H "X-Dataverse-key: $API_TOKEN" -X POST http://$SERVER/api/admin/$dataset-id/reregisterHDLToPID








Send Dataset metadata to PID provider

Forces update to metadata provided to the PID provider of a published dataset. Only accessible to superusers.

curl -H "X-Dataverse-key: $API_TOKEN" -X POST http://$SERVER/api/datasets/$dataset-id/modifyRegistrationMetadata













          

      

      

    





  

    
      
          
            
  
Solr Search Index

Dataverse requires Solr to be operational at all times. If you stop Solr, you should see a error about this on the home page, which is powered by the search index Solr provides. You can set up Solr by following the steps in our Installation Guide’s Prerequisites and Configuration sections explaining how to configure it. This section you’re reading now is about the care and feeding of the search index. PostgreSQL is the “source of truth” and the Dataverse application will copy data from PostgreSQL into Solr. For this reason, the search index can be rebuilt at any time. Depending on the amount of data you have, this can be a slow process. You are encouraged to experiment with production data to get a sense of how long a full reindexing will take.


Contents:


	Full Reindex


	Clear and Reindex


	Clearing Data from Solr


	Start Async Reindex






	Reindex in Place


	Clear Index Timestamps


	Start or Continue Async Reindex















Full Reindex

There are two ways to perform a full reindex of the Dataverse search index. Starting with a “clear” ensures a completely clean index but involves downtime. Reindexing in place doesn’t involve downtime but does not ensure a completely clean index.


Clear and Reindex


Clearing Data from Solr

Please note that the moment you issue this command, it will appear to end users looking at the home page that all data is gone! This is because the home page is powered by the search index.

curl http://localhost:8080/api/admin/index/clear




Start Async Reindex

Please note that this operation may take hours depending on the amount of data in your system. This known issue is being tracked at https://github.com/IQSS/dataverse/issues/50

curl http://localhost:8080/api/admin/index






Reindex in Place

An alternative to completely clearing the search index is to reindex in place.


Clear Index Timestamps

curl -X DELETE http://localhost:8080/api/admin/index/timestamps




Start or Continue Async Reindex

If indexing stops, this command should pick up where it left off based on which index timestamps have been set, which is why we start by clearing these timestamps above. These timestamps are stored in the dvobject database table.

curl http://localhost:8080/api/admin/index/continue











          

      

      

    





  

    
      
          
            
  
IP Groups

IP Groups can be used to permit download of restricted files by IP addresses rather than people. For example, you may want to allow restricted files to be downloaded by researchers who physically enter a library and make use of the library’s network.


Contents:


	Listing IP Groups


	Creating an IP Group


	Listing an IP Group


	Deleting an IP Group







Listing IP Groups

IP Groups can be listed with the following curl command:

curl http://localhost:8080/api/admin/groups/ip




Creating an IP Group

IP Groups must be expressed as ranges in IPv4 or IPv6 format. For illustrative purposes, here is a example of the entire IPv4 and IPv6 range that you can download and edit to have a narrower range to meet your needs. If you need your IP Group to only encompass a single IP address, you must enter that IP address for the “start” and “end” of the range. If you don’t use IPv6 addresses, you can delete that section of the JSON. Please note that the “alias” must be unique if you define multiple IP Groups. You should give it a meaningful “name” since both “alias” and “name” will appear and be searchable in the GUI when your users are assigning roles.

{
  "alias": "ipGroupAll",
  "name": "IP group to match all IPv4 and IPv6 addresses",
  "ranges": [
    [
      "0.0.0.0",
      "255.255.255.255"
    ],
    [
      "::",
      "ffff:ffff:ffff:ffff:ffff:ffff:ffff:ffff"
    ]
  ]
}





Let’s say you download the example above and edit it to give it a range used by your library, giving it a filename of ipGroup1.json and putting it in the /tmp directory. Next, load it into Dataverse using the following curl command:

curl -X POST -H 'Content-type: application/json' http://localhost:8080/api/admin/groups/ip --upload-file /tmp/ipGroup1.json

Note that you can update a group the same way, as long as you use the same alias.




Listing an IP Group

Let’s say you used “ipGroup1” as the alias of the IP Group you created above. To list just that IP Group, you can include the alias in the curl command like this:

curl http://localhost:8080/api/admin/groups/ip/ipGroup1




Deleting an IP Group

It is not recommended to delete an IP Group that has been assigned roles. If you want to delete an IP Group, you should first remove its permissions.

To delete an IP Group with an alias of “ipGroup1”, use the curl command below:

curl -X DELETE http://localhost:8080/api/admin/groups/ip/ipGroup1







          

      

      

    





  

    
      
          
            
  
Monitoring

Once you’re in production, you’ll want to set up some monitoring. This page may serve as a starting point for you but you are encouraged to share your ideas with the Dataverse community!


Contents:


	Operating System Monitoring


	Munin






	HTTP Traffic


	Monitoring HTTP Traffic from the Client Side


	Monitoring HTTP Traffic from the Server Side


	AWStats






	Database Connection Pool used by Glassfish


	actionlogrecord


	EJB Timers







Operating System Monitoring

In production you’ll want to monitor the usual suspects such as CPU, memory, free disk space, etc. There are a variety of tools in this space but we’ll highlight Munin below because it’s relatively easy to set up.


Munin

http://munin-monitoring.org says, “A default installation provides a lot of graphs with almost no work.” From RHEL or CentOS 7, you can try the following steps.

Enable the EPEL yum repo (if you haven’t already):

yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

Install Munin:

yum install munin

Start Munin:

systemctl start munin-node.service

Configure Munin to start at boot:

systemctl enable munin-node.service

Create a username/password (i.e. “admin” for both):

htpasswd /etc/munin/munin-htpasswd admin

Assuming you are fronting Glassfish with Apache, prevent Apache from proxying “/munin” traffic to Glassfish by adding the following line to your Apache config:

ProxyPassMatch ^/munin !

Then reload Apache to pick up the config change:

systemctl reload httpd.service

Test auth for the web interface:

curl http://localhost/munin/ -u admin:admin

At this point, graphs should start being generated for disk, network, processes, system, etc.






HTTP Traffic

HTTP traffic can be monitored from the client side, the server side, or both.


Monitoring HTTP Traffic from the Client Side

HTTP traffic for web clients that have cookies enabled (most browsers) can be tracked by Google Analytics and Piwik (renamed to “Matomo”) as explained in the Configuration section of the Installation Guide under :GoogleAnalyticsCode and :PiwikAnalyticsId, respectively. You could also embed additional client side monitoring solutions by using a custom footer (:FooterCustomizationFile), which is described on the same page.




Monitoring HTTP Traffic from the Server Side

There are a wide variety of solutions available for monitoring HTTP traffic from the server side. The following are merely suggestions and a pull request against what is written here to add additional ideas is certainly welcome! Are you excited about the ELK stack (Elasticsearch, Logstash, and Kibana)? The TICK stack (Telegraph InfluxDB Chronograph and Kapacitor)? GoAccess? Prometheus? Graphite? Splunk? Please consider sharing your work with the Dataverse community!




AWStats

AWStats is a venerable tool for monitoring web traffic based on Apache access logs. On RHEL/CentOS 7, you can try the following steps.

Enable the EPEL yum repo:

yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

Install AWStats:

yum install awstats

Assuming you are using HTTPS rather than HTTP (and you should!), edit /etc/awstats/awstats.standalone.conf and change LogFile="/var/log/httpd/access_log" to LogFile="/var/log/httpd/ssl_access_log". In the same file, change LogFormat=1 to LogFormat=4. Make both of these changes (LogFile and LogFormat in /etc/awstats/awstats.localhost.localdomain.conf as well.

Process the logs:

/usr/share/awstats/tools/awstats_updateall.pl now

Please note that load balancers (such as Amazon’s ELB) might interfer with the LogFormat mentioned above.  To start troubleshooting errors such as AWStats did not find any valid log lines that match your LogFormat parameter, you might need to bump up the value of NbOfLinesForCorruptedLog in the config files above and re-try while you interate on your Apache and AWStats config.

Please note that the Dataverse team has attempted to parse Glassfish logs using AWStats but it didn’t seem to just work and posts have been made at https://stackoverflow.com/questions/49134154/what-logformat-definition-does-awstats-require-to-parse-glassfish-http-access-logs and https://sourceforge.net/p/awstats/discussion/43428/thread/9b1befda/ that can be followed up on some day.






Database Connection Pool used by Glassfish

https://github.com/IQSS/dataverse/issues/2595 contains some information on enabling monitoring of Glassfish, which is disabled by default. It’s a TODO to document what to do here if there is sufficient interest.




actionlogrecord

There is a database table called actionlogrecord that captures events that may be of interest. See https://github.com/IQSS/dataverse/issues/2729 for more discussion around this table.




EJB Timers

Should you be interested in monitoring the EJB timers, this script may be used as an example:

#!/usr/bin/env bash

# example monitoring script for EBJ timers.
# currently assumes that there are two timers
# real monitoring commands should replace the echo statements for production use

r0=`curl -s http://localhost:8080/ejb-timer-service-app/timer`

if [ $? -ne 0 ]; then
	echo "alert - no timer service" # put real alert command here
fi

r1=`echo $r0 | grep -c "There are 2 active persistent timers on this container"`

if [ "1" -ne "$r1" ]; then
	echo "alert - no active timers" # put real alert command here
fi












          

      

      

    





  

    
      
          
            
  
Reporting Tools

Reporting tools created by members of the Dataverse community.


	Matrix (<https://github.com/rindataverse/matrix>): Collaboration Matrix is a visualization showing the connectedness and collaboration between authors and their affiliations. Visit https://rin.lipi.go.id/matrix/ to play with a production installation.


	Dataverse Web Report (<https://github.com/scholarsportal/Dataverse-Web-Report>): Creates interactive charts showing data extracted from the Dataverse Excel Report


	Dataverse Reports for Texas Digital Library (<https://github.com/TexasDigitalLibrary/dataverse-reports>): A python3-based tool to generate and email statistical reports from Dataverse (https://dataverse.org/) using the native API and database queries.








          

      

      

    





  

    
      
          
            
  
Maintenance

When you have scheduled down time for your production servers, we provide a sample maintenance page for you to use. To download, right-click and select “Save Link As”.

The maintenance page is intended to be a static page served by Apache to provide users with a nicer, more informative experience when the site is unavailable.





          

      

      

    





  

    
      
          
            
  
Backups

Running tape, or similar backups to ensure the long term preservation of all the data stored in the Dataverse is an implied responsibility that should be taken most seriously.

In addition to running these disk-level backups, we have provided an experimental script that can be run on schedule (via a cron job or something similar) to create extra archival copies of all the Datafiles stored in the Dataverse on a remote storage server, accessible via an ssh connection. The script and some documentation can be found in scripts/backup/run_backup in the Dataverse source tree at https://github.com/IQSS/dataverse . Some degree of knowledge of system administration and Python is required.

Once again, the script is experimental and NOT a replacement of regular and reliable disk backups!





          

      

      

    





  

    
      
          
            
  
Troubleshooting

This new (as of v.4.6) section of the Admin guide is for tips on how to diagnose and fix system problems.


Contents:


	Glassfish


	Deployment fails, “EJB Timer Service not available”


	Timer not working







Glassfish

server.log is the main place to look when you encounter problems. Hopefully an error message has been logged. If there’s a stack trace, it may be of interest to developers, especially they can trace line numbers back to a tagged version.

For debugging purposes, you may find it helpful to increase logging levels as mentioned in the Debugging section of the Developer Guide.

Our guides focus on using the command line to manage Glassfish but you might be interested in an admin GUI at http://localhost:4848




Deployment fails, “EJB Timer Service not available”

Sometimes the Dataverse application fails to deploy, or Glassfish fails to restart once the application is deployed, with the following error message: “remote failure: Error occurred during deployment: Exception while loading the app : EJB Timer Service is not available. Please see server.log for more details.”

We don’t know what’s causing this issue, but here’s a known workaround:


	Stop Glassfish;


	Remove the generated and osgi-cache directories;


	Delete all the rows from the EJB__TIMER__TBL table in the database;


	Start Glassfish




The shell script below performs the steps above.
Note that it may or may not work on your system, so it is provided as an example only, downloadable here. Aside from the configuration values that need to be changed to reflect your environment (the Glassfish directory, name of the database, etc.) the script relies on the database being configured in a certain way for access. (See the comments in the script for more information)

#!/bin/sh

# EBJ timers sometimes cause problems; utility to clear generated directories and database rows

# assumes this script is being run as root, and that the postgres user had passwordless 
# access to the database (local sockets, or appropriate environmental variables).

# will restart glassfish if it's stopped; comment out the `start-domain` command at the end
# if you'd like to avoid that.

# directory where glassfish is installed
GLASSFISH_DIR=/usr/local/glassfish4

# directory within glassfish (defaults)
DV_DIR=${GLASSFISH_DIR}/glassfish/domains/domain1

# name of dataverse database
DV_DB=dvndb

# OS user for the database
DB_USER=postgres

# stop the glassfish domain (generates a warning if glassfish is stopped)
${GLASSFISH_DIR}/bin/asadmin stop-domain

rm -rf ${GLASSFISH_DIR}/${DV_DIR}/generated/
rm -rf ${GLASSFISH_DIR}/${DV_DIR}/osgi-cache/felix

sudo -u ${DB_USER} psql ${DV_DB} -c 'delete from "EJB__TIMER__TBL"';

# restart the domain (also generates a warning if glassfish is stopped)
${GLASSFISH_DIR}/bin/asadmin start-domain









Timer not working

Dataverse relies on EJB timers to perform scheduled tasks: harvesting from remote servers, updating the local OAI sets and running metadata exports. (See Dataverse Application Timers for details.) If these scheduled jobs are not running on your server, this may be the result of the incompatibility between the version of PostgreSQL database you are using, and PostgreSQL JDBC driver in use by your instance of Glassfish. The symptoms:

If you are seeing the following in your server.log…

Handling timeout on …

followed by an Exception stack trace with these lines in it:

Internal Exception: java.io.StreamCorruptedException: invalid stream header …

Exception Description: Could not deserialize object from byte array …

… it most likely means that it is the JDBC driver incompatibility that’s preventing the timer from working correctly.
Make sure you install the correct version of the driver. For example, if you are running the version 9.3 of PostgreSQL, make sure you have the driver postgresql-9.3-1104.jdbc4.jar in your <GLASSFISH FOLDER>/glassfish/lib directory. Go here [https://jdbc.postgresql.org/download.html]
to download the correct version of the driver. If you have an older driver in glassfish/lib, make sure to remove it, replace it with the new version and restart Glassfish. (You may need to remove the entire contents of <GLASSFISH FOLDER>/glassfish/domains/domain1/generated before you start Glassfish).







          

      

      

    





  

    
      
          
            
  
API Guide

Contents:



	Introduction
	How This Guide is Organized

	Authentication

	Testing

	Support

	Metrics





	SWORD API
	About

	Backward incompatible changes

	New features as of v1.1

	curl examples
	Retrieve SWORD service document

	Create a dataset with an Atom entry
	Dublin Core Terms (DC Terms) Qualified Mapping - Dataverse DB Element Crosswalk





	List datasets in a dataverse

	Add files to a dataset with a zip file

	Display a dataset atom entry

	Display a dataset statement

	Delete a file by database id

	Replacing metadata for a dataset

	Delete a dataset

	Determine if a dataverse has been published

	Publish a dataverse

	Publish a dataset





	Known issues

	Bug fixes in v1.1

	Client libraries





	Search API
	Parameters

	Basic Search Example

	Advanced Search Example

	Iteration





	Data Access API
	Basic File Access
	Parameters:





	Multiple File (“bundle”) download
	Parameters:





	“All Formats” bundled access for Tabular Files.
	Parameters:





	Data Variable Metadata Access

	Preprocessed Data

	Authentication and Authorization

	Access Requests and Processing
	Allow Access Requests:

	Request Access:

	Grant File Access:

	Reject File Access:

	Revoke File Access:

	List File Access Requests:









	Native API
	Dataverses
	Create a Dataverse

	View a Dataverse

	Delete a Dataverse

	Show Contents of a Dataverse

	List Roles Defined in a Dataverse

	List Facets Configured for a Dataverse

	Set Facets for a Dataverse

	Create a New Role in a Dataverse

	List Role Assignments in a Dataverse

	Assign Default Role to User Creating a Dataset in a Dataverse

	Assign a New Role on a Dataverse

	Delete Role Assignment from a Dataverse

	List Metadata Blocks Defined on a Dataverse

	Define Metadata Blocks for a Dataverse

	Determine if a Dataverse Inherits Its Metadata Blocks from Its Parent

	Configure a Dataverse to Inherit Its Metadata Blocks from Its Parent

	Create a Dataset in a Dataverse

	Import a Dataset into a Dataverse

	Import a Dataset into a Dataverse with a DDI file

	Publish a Dataverse





	Datasets
	Get JSON Representation of a Dataset

	Delete Dataset

	List Versions of a Dataset

	Get Version of a Dataset

	Export Metadata of a Dataset in Various Formats
	Schema.org JSON-LD





	List Files in a Dataset

	List All Metadata Blocks for a Dataset

	List Single Metadata Block for a Dataset

	Update Metadata For a Dataset

	Edit Dataset Metadata

	Delete Dataset Metadata

	Publish a Dataset

	Delete Dataset Draft

	Set Citation Date Field for a Dataset

	Revert Citation Date Field to Default for Dataset

	List Role Assignments for a Dataset

	Create a Private URL for a Dataset

	Get the Private URL for a Dataset

	Delete the Private URL from a Dataset

	Add a File to a Dataset

	Submit a Dataset for Review

	Return a Dataset to Author

	Link a Dataset

	Dataset Locks





	Files
	Adding Files

	Accessing (downloading) files

	Restrict Files

	Replacing Files

	Uningest a File

	Reingest a File

	Provenance

	Datafile Integrity





	Builtin Users
	Create a Builtin User





	Roles
	Create a New Role in a Dataverse

	Show Role

	Delete Role





	Explicit Groups
	Create New Explicit Group

	List Explicit Groups in a Dataverse

	Show Single Group in a Dataverse

	Update Group in a Dataverse

	Delete Group from a Dataverse

	Add Multiple Role Assignees to an Explicit Group

	Add a Role Assignee to an Explicit Group

	Remove a Role Assignee from an Explicit Group





	Shibboleth Groups

	Info
	Show Dataverse Version and Build Number

	Show Dataverse Server Name

	Show Custom Popup Text for Publishing Datasets

	Get API Terms of Use URL





	Metadata Blocks
	Show Info About All Metadata Blocks

	Show Info About Single Metadata Block





	Notifications
	Get All Notifications by User





	Admin
	List All Database Settings

	Configure Database Setting

	Get Single Database Setting

	Delete Database Setting

	List Authentication Provider Factories

	List Authentication Providers

	Add Authentication Provider

	Show Authentication Provider

	Enable or Disable an Authentication Provider

	Check If an Authentication Provider is Enabled

	Delete an Authentication Provider

	List Global Roles

	Create Global Role

	List Users

	List Single User

	Make User a SuperUser

	List Role Assignments of a Role Assignee

	List Permissions a User Has on a Dataverse or Dataset

	Show Role Assignee

	Saved Search

	Dataset Integrity

	Workflows

	Metrics

	Inherit Dataverse Role Assignments









	Metrics API
	Total

	To-Month

	Past Days

	Dataverse Specific Commands
	By Subject

	By Category





	Dataset Specific Commands
	By Subject









	Client Libraries
	Python

	R

	Java





	Apps
	Javascript
	TwoRavens





	PHP
	OJS





	Python
	OSF

	GeoConnect

	metrics.dataverse.org





	Java
	DVUploader

	Dataverse for Android

















          

      

      

    





  

    
      
          
            
  
Introduction

We encourage anyone interested in building tools that interoperate with Dataverse to utilize our APIs. The Dataverse community has supplied Client Libraries for Python, R, and Java and we are always interested in helping the community develop libraries for additional languages. The Apps section links to open source Javascript, PHP, Python, and Java code that you can learn from while developing against Dataverse APIs.


Contents:


	How This Guide is Organized


	Authentication


	Testing


	Support


	Metrics







How This Guide is Organized

We document the Dataverse API in five sections:


	SWORD API: For depositing data using a standards-based approach rather than the Native API.


	Search API: For searching dataverses, datasets, and files.


	Data Access API: For downloading and subsetting data.


	Native API: For performing most tasks that are possible in the GUI.


	Metrics API: For query statisics about usage of a Dataverse installation.




We use the term “native” to mean that the API is not based on any standard. For this reason, the Search API and Data Access API could also be considered “native” and in the future we may reorganize the API Guide to split the Native API section into “Datasets API”, “Files” API, etc.




Authentication

Most Dataverse APIs require the use of an API token. (In code we sometimes call it a “key” because it’s shorter.) Instructions for getting a token are described in the Account Creation + Management section of the User Guide.

There are two ways to pass your API token to Dataverse APIs. The preferred method is to send the token in the X-Dataverse-key HTTP header, as in the following curl example:

curl -H "X-Dataverse-key: 8b955f87-e49a-4462-945c-67d32e391e7e" https://demo.dataverse.org/api/datasets/:persistentId?persistentId=doi:TEST/12345





Throughout this guide you will often see Bash shell envionmental variables being used, like this:

export API_TOKEN='8b955f87-e49a-4462-945c-67d32e391e7e'
curl -H "X-Dataverse-key: $API_TOKEN" https://demo.dataverse.org/api/datasets/:persistentId?persistentId=doi:TEST/12345





The second way to pass your API token is via an extra query parameter called key in the URL like this:

curl "https://demo.dataverse.org/api/datasets/:persistentId?persistentId=doi:TEST/12345&key=$API_TOKEN"





Use of the X-Dataverse-key HTTP header form is preferred because putting the query parameters in URLs often results in them finding their way into web server access logs. Your API token should be kept as secret as your password because it can be used to perform any action as you in the Dataverse application.




Testing

Rather than using a production installation of Dataverse, API users are welcome to use http://demo.dataverse.org for testing.




Support

If you are using the APIs for an installation of Dataverse hosted by your institution, you may want to reach out to the team that supports it. At the top of the Dataverse installation’s home page, there should be a form you can fill out by clicking the “Support” link.

If you are having trouble with http://demo.dataverse.org or have questions about the APIs, please feel free to reach out to the Dataverse community via https://groups.google.com/forum/#!forum/dataverse-community .




Metrics

APIs described in this guide are shipped with the Dataverse software itself. Additional APIs are available if someone at your institution installs the “miniverse” application from https://github.com/IQSS/miniverse and gives it read only access to a production Dataverse database. http://dataverse.org/metrics is powered by miniverse.







          

      

      

    





  

    
      
          
            
  
SWORD API

SWORD [http://en.wikipedia.org/wiki/SWORD_%28protocol%29] stands for “Simple Web-service Offering Repository Deposit” and is a “profile” of AtomPub (RFC 5023 [https://tools.ietf.org/html/rfc5023]) which is a RESTful API that allows non-Dataverse software to deposit files and metadata into a Dataverse installation. Client libraries are available in Python, Java, R, Ruby, and PHP.


Contents:


	About


	Backward incompatible changes


	New features as of v1.1


	curl examples


	Retrieve SWORD service document


	Create a dataset with an Atom entry


	Dublin Core Terms (DC Terms) Qualified Mapping - Dataverse DB Element Crosswalk






	List datasets in a dataverse


	Add files to a dataset with a zip file


	Display a dataset atom entry


	Display a dataset statement


	Delete a file by database id


	Replacing metadata for a dataset


	Delete a dataset


	Determine if a dataverse has been published


	Publish a dataverse


	Publish a dataset






	Known issues


	Bug fixes in v1.1


	Client libraries







About

Introduced in Dataverse Network (DVN) 3.6 [http://guides.dataverse.org/en/3.6.2/dataverse-api-main.html#data-deposit-api], the SWORD API was formerly known as the “Data Deposit API” and data-deposit/v1 appeared in the URLs. For backwards compatibility these URLs continue to work (with deprecation warnings). Due to architectural changes and security improvements (especially the introduction of API tokens) in Dataverse 4.0, a few backward incompatible changes were necessarily introduced and for this reason the version has been increased to v1.1. For details, see Backward incompatible changes.

Dataverse implements most of SWORDv2 [http://swordapp.org/sword-v2/sword-v2-specifications/], which is specified at http://swordapp.github.io/SWORDv2-Profile/SWORDProfile.html . Please reference the SWORDv2 specification [http://swordapp.github.io/SWORDv2-Profile/SWORDProfile.html] for expected HTTP status codes (i.e. 201, 204, 404, etc.), headers (i.e. “Location”), etc.

As a profile of AtomPub, XML is used throughout SWORD. As of Dataverse 4.0 datasets can also be created via JSON using the “native” API. SWORD is limited to the dozen or so fields listed below in the crosswalk, but the native API allows you to populate all metadata fields available in Dataverse.




Backward incompatible changes

For better security than in DVN 3.x, usernames and passwords are no longer accepted. The use of an API token is required.

Differences in Dataverse 4 from DVN 3.x lead to a few minor backward incompatible changes in the Dataverse implementation of SWORD, which are listed below. Old v1 URLs should continue to work but the Service Document will contain a deprecation warning and responses will contain v1.1 URLs. See also Known issues.


	Newly required fields when creating/editing datasets for compliance with the Joint Declaration for Data Citation principles [http://thedata.org/blog/joint-declaration-data-citation-principles-and-dataverse].


	dcterms:creator (maps to authorName)


	dcterms:description






	Deaccessioning is no longer supported. An alternative will be developed at https://github.com/IQSS/dataverse/issues/778


	The Service Document will show a single API Terms of Use rather than root level and dataverse level Deposit Terms of Use.







New features as of v1.1


	Dataverse 4 supports API tokens and requires them to be used for APIs instead of a username and password. In the curl examples below, you will see curl -u $API_TOKEN: showing that you should send your API token as the username and nothing as the password. For example, curl -u 54b143b5-d001-4254-afc0-a1c0f6a5b5a7:.


	SWORD operations no longer require “admin” permission. In order to use any SWORD operation in DVN 3.x, you had to be an “admin” on a dataverse (the container for your dataset) and similar rules were applied in Dataverse 4.4 and earlier (the EditDataverse permission was required). The SWORD API has now been fully integrated with the Dataverse 4 permission model such that any action you have permission to perform in the GUI or “native” API you are able to perform via SWORD. This means that even a user with a “Contributor” role can operate on datasets via SWORD. Note that users with the “Contributor” role do not have the PublishDataset permission and will not be able publish their datasets via any mechanism, GUI or API.


	Dataverses can be published via SWORD.


	Datasets versions will only be increased to the next minor version (i.e. 1.1) rather than a major version (2.0) if possible. This depends on the nature of the change. Adding or removing a file, for example, requires a major version bump.


	“Author Affiliation” can now be populated with an XML attribute. For example: <dcterms:creator affiliation=”Coffee Bean State University”>Stumptown, Jane</dcterms:creator>


	“Contributor” can now be populated and the “Type” (Editor, Funder, Researcher, etc.) can be specified with an XML attribute. For example: <dcterms:contributor type=”Funder”>CaffeineForAll</dcterms:contributor>


	“License” can now be set with dcterms:license and the possible values are “CC0” and “NONE”. “License” interacts with “Terms of Use” (dcterms:rights) in that if you include dcterms:rights in the XML, the license will be set to “NONE”. If you don’t include dcterms:rights, the license will default to “CC0”. It is invalid to specify “CC0” as a license and also include dcterms:rights; an error will be returned. For backwards compatibility, dcterms:rights is allowed to be blank (i.e. <dcterms:rights></dcterms:rights>) but blank values will not be persisted to the database and the license will be set to “NONE”.


	“Contact E-mail” is automatically populated from dataset owner’s email.


	“Subject” uses our controlled vocabulary list of subjects. This list is in the Citation Metadata of our User Guide > Metadata References [http://guides.dataverse.org/en/latest/user/appendix.html#metadata-references]. Otherwise, if a term does not match our controlled vocabulary list, it will put any subject terms in “Keyword”. If Subject is empty it is automatically populated with “N/A”.


	Zero-length files are now allowed (but not necessarily encouraged).


	“Depositor” and “Deposit Date” are auto-populated.







curl examples


Retrieve SWORD service document

The service document enumerates the dataverses (“collections” from a SWORD perspective) the user can deposit data into. The “collectionPolicy” element for each dataverse contains the Terms of Use. Any user with an API token can use this API endpoint. Institution-wide Shibboleth groups are not respected because membership in such a group can only be set via a browser.

curl -u $API_TOKEN: https://$HOSTNAME/dvn/api/data-deposit/v1.1/swordv2/service-document




Create a dataset with an Atom entry

To create a dataset, you must have the “Dataset Creator” role (the AddDataset permission) on a dataverse. Practically speaking, you should first retrieve the service document to list the dataverses into which you are authorized to deposit data.

curl -u $API_TOKEN: --data-binary "@path/to/atom-entry-study.xml" -H "Content-Type: application/atom+xml" https://$HOSTNAME/dvn/api/data-deposit/v1.1/swordv2/collection/dataverse/$DATAVERSE_ALIAS

Example Atom entry (XML)

<?xml version="1.0"?>
<entry xmlns="http://www.w3.org/2005/Atom"
       xmlns:dcterms="http://purl.org/dc/terms/">
   <!-- some embedded metadata -->
   <dcterms:title>Roasting at Home</dcterms:title>
   <dcterms:creator>Peets, John</dcterms:creator>
   <dcterms:creator affiliation="Coffee Bean State University">Stumptown, Jane</dcterms:creator>
   <!-- Dataverse controlled vocabulary subject term -->
   <dcterms:subject>Chemistry</dcterms:subject>
   <!-- keywords -->
   <dcterms:subject>coffee</dcterms:subject>
   <dcterms:subject>beverage</dcterms:subject>
   <dcterms:subject>caffeine</dcterms:subject>
   <dcterms:description>Considerations before you start roasting your own coffee at home.</dcterms:description>
   <!-- Producer with financial or admin responsibility of the data -->
   <dcterms:publisher>Coffee Bean State University</dcterms:publisher>
   <dcterms:contributor type="Funder">CaffeineForAll</dcterms:contributor>
   <!-- production date -->
   <dcterms:date>2013-07-11</dcterms:date>
   <!-- kind of data -->
   <dcterms:type>aggregate data</dcterms:type>
   <!-- List of sources of the data collection-->
   <dcterms:source>Stumptown, Jane. 2011. Home Roasting. Coffeemill Press.</dcterms:source>
   <!-- related materials -->
   <dcterms:relation>Peets, John. 2010. Roasting Coffee at the Coffee Shop. Coffeemill Press</dcterms:relation>
   <!-- geographic coverage -->
   <dcterms:coverage>United States</dcterms:coverage>
   <dcterms:coverage>Canada</dcterms:coverage>
   <!-- license and restrictions -->
   <dcterms:license>NONE</dcterms:license>
   <dcterms:rights>Downloader will not use the Materials in any way prohibited by applicable laws.</dcterms:rights>
   <!-- related publications -->
   <dcterms:isReferencedBy holdingsURI="http://dx.doi.org/10.1038/dvn333" agency="DOI" IDNo="10.1038/dvn333">Peets, J., &amp; Stumptown, J. (2013). Roasting at Home. New England Journal of Coffee, 3(1), 22-34.</dcterms:isReferencedBy>
</entry>






Dublin Core Terms (DC Terms) Qualified Mapping - Dataverse DB Element Crosswalk









	DC (terms: namespace)

	Dataverse DB Element

	Required

	Note





	dcterms:title

	title

	Y

	Title of the Dataset.



	dcterms:creator

	authorName (LastName, FirstName)

	Y

	Author(s) for the Dataset.



	dcterms:subject

	subject (Controlled Vocabulary) OR keyword

	Y

	Controlled Vocabulary list is in our User Guide > Metadata References [http://guides.dataverse.org/en/latest/user/appendix.html#metadata-references].



	dcterms:description

	dsDescriptionValue

	Y

	Describing the purpose, scope or nature of the Dataset. Can also use dcterms:abstract.



	dcterms:publisher

	producerName

	
	Person or agency financially or administratively responsible for the Dataset



	dcterms:contributor

	datasetContactEmail

	Y

	Contact Email is required so will need to add an attribute type=”Contact”. Also used for Funder: add attribute type=”Funder” which maps to contributorName.



	dcterms:date

	productionDate (YYYY-MM-DD or YYYY-MM or YYYY)

	
	Production date of Dataset.



	dcterms:type

	kindOfData

	
	Type of data included in the file: survey data, census/enumeration data, aggregate data, clinical.



	dcterms:source

	dataSources

	
	List of books, articles, data files if any that served as the sources for the Dataset.



	dcterms:relation

	relatedMaterial

	
	Any related material (journal article citation is not included here - see: dcterms:isReferencedBy below).



	dcterms:coverage

	otherGeographicCoverage

	
	General information on the geographic coverage of the Dataset.



	dcterms:license

	license

	
	Set the license to CC0 (default in Dataverse for new Datasets), otherwise enter “NONE” and fill in the dcterms:rights field.



	dcterms:rights

	termsofuse

	
	If not using CC0, enter any terms of use or restrictions for the Dataset.



	dcterms:isReferencedBy

	publicationCitation

	
	The publication (journal article, book, other work) that uses this dataset (include citation, permanent identifier (DOI), and permanent URL).











List datasets in a dataverse

You must have permission to add datasets in a dataverse (the dataverse should appear in the service document) to list the datasets inside. Institution-wide Shibboleth groups are not respected because membership in such a group can only be set via a browser.

curl -u $API_TOKEN: https://$HOSTNAME/dvn/api/data-deposit/v1.1/swordv2/collection/dataverse/$DATAVERSE_ALIAS




Add files to a dataset with a zip file

You must have EditDataset permission (Contributor role or above such as Curator or Admin) on the dataset to add files.

curl -u $API_TOKEN: --data-binary @path/to/example.zip -H "Content-Disposition: filename=example.zip" -H "Content-Type: application/zip" -H "Packaging: http://purl.org/net/sword/package/SimpleZip" https://$HOSTNAME/dvn/api/data-deposit/v1.1/swordv2/edit-media/study/doi:TEST/12345




Display a dataset atom entry

You must have ViewUnpublishedDataset permission (Contributor role or above such as Curator or Admin) on the dataset to view its Atom entry.

Contains data citation (bibliographicCitation), alternate URI (persistent URI of study), edit URI, edit media URI, statement URI.

curl -u $API_TOKEN: https://$HOSTNAME/dvn/api/data-deposit/v1.1/swordv2/edit/study/doi:TEST/12345




Display a dataset statement

Contains title, author, feed of file entries, latestVersionState, locked boolean, updated timestamp. You must have ViewUnpublishedDataset permission (Contributor role or above such as Curator or Admin) on the dataset to display the statement.

curl -u $API_TOKEN: https://$HOSTNAME/dvn/api/data-deposit/v1.1/swordv2/statement/study/doi:TEST/12345




Delete a file by database id

You must have EditDataset permission (Contributor role or above such as Curator or Admin) on the dataset to delete files.

curl -u $API_TOKEN: -X DELETE https://$HOSTNAME/dvn/api/data-deposit/v1.1/swordv2/edit-media/file/123




Replacing metadata for a dataset

Please note that ALL metadata (title, author, etc.) will be replaced, including fields that can not be expressed with “dcterms” fields. You must have EditDataset permission (Contributor role or above such as Curator or Admin) on the dataset to replace metadata.

curl -u $API_TOKEN: --upload-file "path/to/atom-entry-study2.xml" -H "Content-Type: application/atom+xml" https://$HOSTNAME/dvn/api/data-deposit/v1.1/swordv2/edit/study/doi:TEST/12345




Delete a dataset

You must have the DeleteDatasetDraft permission (Contributor role or above such as Curator or Admin) on the dataset to delete it. Please note that if the dataset has never been published you will be able to delete it completely but if the dataset has already been published you will only be able to delete post-publication drafts, never a published version.

curl -u $API_TOKEN: -i -X DELETE https://$HOSTNAME/dvn/api/data-deposit/v1.1/swordv2/edit/study/doi:TEST/12345




Determine if a dataverse has been published

This API endpoint is the same as the “list datasets in a dataverse” endpoint documented above and the same permissions apply but it is documented here separately to point out that you can look for a boolean called dataverseHasBeenReleased to know if a dataverse has been released, which is required for publishing a dataset.

curl -u $API_TOKEN: https://$HOSTNAME/dvn/api/data-deposit/v1.1/swordv2/collection/dataverse/$DATAVERSE_ALIAS




Publish a dataverse

The cat /dev/null and --data-binary @- arguments are used to send zero-length content to the API, which is required by the upstream library to process the In-Progress: false header. You must have the PublishDataverse permission (Admin role) on the dataverse to publish it.

cat /dev/null | curl -u $API_TOKEN: -X POST -H "In-Progress: false" --data-binary @- https://$HOSTNAME/dvn/api/data-deposit/v1.1/swordv2/edit/dataverse/$DATAVERSE_ALIAS




Publish a dataset

The cat /dev/null and --data-binary @- arguments are used to send zero-length content to the API, which is required by the upstream library to process the In-Progress: false header. You must have the PublishDataset permission (Curator or Admin role) on the dataset to publish it.

cat /dev/null | curl -u $API_TOKEN: -X POST -H "In-Progress: false" --data-binary @- https://$HOSTNAME/dvn/api/data-deposit/v1.1/swordv2/edit/study/doi:TEST/12345






Known issues


	Deleting a file from a published version (not a draft) creates a draft but doesn’t delete the file: https://github.com/IQSS/dataverse/issues/2464


	The Service Document does not honor groups within groups: https://github.com/IQSS/dataverse/issues/3056


	Should see all the fields filled in for a dataset regardless of what the parent dataverse specifies: https://github.com/IQSS/dataverse/issues/756


	SWORD 2.0 Profile 6.4 “Retrieving the content” has not been implemented: https://github.com/IQSS/dataverse/issues/183


	Deaccessioning via API is not supported (it was in DVN 3.x): https://github.com/IQSS/dataverse/issues/778


	Let file metadata (i.e. description) be specified during zip upload: https://github.com/IQSS/dataverse/issues/723


	SWORD: Display of actual dcterms xml element for equivalent of required field not found: https://github.com/IQSS/dataverse/issues/1019







Bug fixes in v1.1


	Fix Abdera ArrayIndexOutOfBoundsException with non-existent atom-entry-study.xml in SWORD jar (upstream ideally) https://github.com/IQSS/dataverse/issues/893


	Sword API: Can’t create study when hidden characters are introduced in atom.xml https://github.com/IQSS/dataverse/issues/894







Client libraries


	Python: https://github.com/swordapp/python-client-sword2


	Java: https://github.com/swordapp/JavaClient2.0


	R: https://github.com/IQSS/dataverse-client-r


	Ruby: https://github.com/swordapp/sword2ruby


	PHP: https://github.com/swordapp/swordappv2-php-library










          

      

      

    





  

    
      
          
            
  
Search API


Contents:


	Parameters


	Basic Search Example


	Advanced Search Example


	Iteration






The Search API supports the same searching, sorting, and faceting operations as the Dataverse web interface.

Unlike the web interface, this new API is limited to published data.

The parameters and JSON response are partly inspired by the GitHub Search API [https://developer.github.com/v3/search/].


Note


  CORS
 The search API can be used from scripts running in web browsers, as it allows cross-origin resource sharing (CORS).



Please note that in Dataverse 4.3 and older the “citation” field wrapped the persistent ID URL in an <a> tag but this has been changed to plaintext. If you want the old value with HTML in it, a new field called “citationHtml” can be used.


Parameters








	Name

	Type

	Description





	q

	string

	The search term or terms. Using “title:data” will search only the “title” field. “*” can be used as a wildcard either alone or adjacent to a term (i.e. “bird*”). For example, https://demo.dataverse.org/api/search?q=title:data



	type

	string

	Can be either “dataverse”, “dataset”, or “file”. Multiple “type” parameters can be used to include multiple types (i.e. type=dataset&type=file). If omitted, all types will be returned.  For example, https://demo.dataverse.org/api/search?q=*&type=dataset



	subtree

	string

	The identifier of the dataverse to which the search should be narrowed. The subtree of this dataverse and all its children will be searched.  Multiple “subtree” parameters can be used to include multiple Dataverses. For example, https://demo.dataverse.org/api/search?q=data&subtree=birds&subtree=cats .



	sort

	string

	The sort field. Supported values include “name” and “date”. See example under “order”.



	order

	string

	The order in which to sort. Can either be “asc” or “desc”.  For example, https://demo.dataverse.org/api/search?q=data&sort=name&order=asc



	per_page

	int

	The number of results to return per request. The default is 10. The max is 1000. See iteration example.



	start

	int

	A cursor for paging through search results. See iteration example.



	show_relevance

	boolean

	Whether or not to show details of which fields were matched by the query. False by default. See advanced search example.



	show_facets

	boolean

	Whether or not to show facets that can be operated on by the “fq” parameter. False by default. See advanced search example.



	fq

	string

	A filter query on the search term. Multiple “fq” parameters can be used. See advanced search example.



	show_entity_ids

	boolean

	Whether or not to show the database IDs of the search results (for developer use).



	query_entities

	boolean

	Whether entities are queried via direct database calls (for developer use).









Basic Search Example

https://demo.dataverse.org/api/search?q=trees

{
    "status":"OK",
    "data":{
        "q":"trees",
        "total_count":4,
        "start":0,
        "spelling_alternatives":{
            "trees":"[tree]"
        },
        "items":[
            {
                "name":"Trees",
                "type":"dataverse",
                "url":"https://demo.dataverse.org/dataverse/trees",
                "image_url":"https://demo.dataverse.org/api/access/dvCardImage/7",
                "identifier":"trees",
                "description":"A tree dataverse with some birds",
                "published_at":"2016-05-10T12:53:38Z"
            },
            {
                "name":"Chestnut Trees",
                "type":"dataverse",
                "url":"https://demo.dataverse.org/dataverse/chestnuttrees",
                "image_url":"https://demo.dataverse.org/api/access/dvCardImage/9",
                "identifier":"chestnuttrees",
                "description":"A dataverse with chestnut trees and an oriole",
                "published_at":"2016-05-10T12:52:38Z"
            },
            {
                "name":"trees.png",
                "type":"file",
                "url":"https://demo.dataverse.org/api/access/datafile/12",
                "image_url":"https://demo.dataverse.org/api/access/fileCardImage/12",
                "file_id":"12",
                "description":"",
                "published_at":"2016-05-10T12:53:39Z",
                "file_type":"PNG Image",
                "file_content_type":"image/png",
                "size_in_bytes":8361,
                "md5":"0386269a5acb2c57b4eade587ff4db64",
                "dataset_citation":"Spruce, Sabrina, 2016, \"Spruce Goose\", http://dx.doi.org/10.5072/FK2/NFSEHG, Root Dataverse, V1"
            },
            {
                "name":"Birds",
                "type":"dataverse",
                "url":"https://demo.dataverse.org/dataverse/birds",
                "image_url":"https://demo.dataverse.org/api/access/dvCardImage/2",
                "identifier":"birds",
                "description":"A bird dataverse with some trees",
                "published_at":"2016-05-10T12:57:27Z"
            }
        ],
        "count_in_response":4
    }
}








Advanced Search Example

https://demo.dataverse.org/api/search?q=finch&show_relevance=true&show_facets=true&fq=publicationDate:2016&subtree=birds

In this example, show_relevance=true matches per field are shown. Available facets are shown with show_facets=true and of the facets is being used with fq=publicationDate:2016. The search is being narrowed to the dataverse with the identifier “birds” with the parameter subtree=birds.

{
    "status":"OK",
    "data":{
        "q":"finch",
        "total_count":2,
        "start":0,
        "spelling_alternatives":{
        },
        "items":[
            {
                "name":"Finches",
                "type":"dataverse",
                "url":"https://demo.dataverse.org/dataverse/finches",
                "image_url":"https://demo.dataverse.org/api/access/dvCardImage/3",
                "identifier":"finches",
                "description":"A dataverse with finches",
                "published_at":"2016-05-10T12:57:38Z",
                "matches":[
                    {
                        "description":{
                            "snippets":[
                                "A dataverse with <span class=\"search-term-match\">finches</span>"
                            ]
                        }
                    },
                    {
                        "name":{
                            "snippets":[
                                "<span class=\"search-term-match\">Finches</span>"
                            ]
                        }
                    }
                ],
                "score": 3.8500118255615234
            },
            {
                "name":"Darwin's Finches",
                "type":"dataset",
                "url":"http://dx.doi.org/10.5072/FK2/G2VPE7",
                "image_url":"https://demo.dataverse.org/api/access/dsCardImage/2",
                "global_id":"doi:10.5072/FK2/G2VPE7",
                "description": "Darwin's finches (also known as the Galápagos finches) are a group of about fifteen species of passerine birds.",
                "published_at":"2016-05-10T12:57:45Z",
                "citationHtml":"Finch, Fiona, 2016, \"Darwin's Finches\", <a href=\"http://dx.doi.org/10.5072/FK2/G2VPE7\" target=\"_blank\">http://dx.doi.org/10.5072/FK2/G2VPE7</a>, Root Dataverse, V1",
                "citation":"Finch, Fiona, 2016, \"Darwin's Finches\", http://dx.doi.org/10.5072/FK2/G2VPE7, Root Dataverse, V1",
                "matches":[
                    {
                        "authorName":{
                            "snippets":[
                                "<span class=\"search-term-match\">Finch</span>, Fiona"
                            ]
                        }
                    },
                    {
                        "dsDescriptionValue":{
                            "snippets":[
                                "Darwin's <span class=\"search-term-match\">finches</span> (also known as the Galápagos <span class=\"search-term-match\">finches</span>) are a group of about fifteen species"
                            ]
                        }
                    },
                    {
                        "title":{
                            "snippets":[
                                "Darwin's <span class=\"search-term-match\">Finches</span>"
                            ]
                        }
                    }
                ],
                "score": 1.5033848285675049,
                "authors":[
                    "Finch, Fiona"
                ]
            }
        ],
        "facets":[
            {
                "subject_ss":{
                    "friendly":"Subject",
                    "labels":[
                        {
                            "Medicine, Health and Life Sciences":2
                        }
                    ]
                },
                "authorName_ss": {
                    "friendly":"Author Name",
                    "labels": [
                        {
                            "Finch, Fiona":1
                        }
                    ]
                },
                "publicationDate":{
                    "friendly":"Publication Date",
                    "labels":[
                        {
                            "2016":2
                        }
                    ]
                }
            }
        ],
        "count_in_response":2
    }
}








Iteration

Be default, up to 10 results are returned with every request (though this can be increased with the per_page parameter). To iterate through many results, increase the start parameter on each iteration until you reach the total_count in the response. An example in Python is below.

#!/usr/bin/env python
import urllib2
import json
base = 'https://demo.dataverse.org'
rows = 10
start = 0
page = 1
condition = True # emulate do-while
while (condition):
    url = base + '/api/search?q=*' + "&start=" + str(start)
    data = json.load(urllib2.urlopen(url))
    total = data['data']['total_count']
    print "=== Page", page, "==="
    print "start:", start, " total:", total
    for i in data['data']['items']:
        print "- ", i['name'], "(" + i['type'] + ")"
    start = start + rows
    page += 1
    condition = start < total





Output from iteration example

=== Page 1 ===
start: 0  total: 12
-  Spruce Goose (dataset)
-  trees.png (file)
-  Spruce (dataverse)
-  Trees (dataverse)
-  Darwin's Finches (dataset)
-  Finches (dataverse)
-  Birds (dataverse)
-  Rings of Conifers (dataset)
-  Chestnut Trees (dataverse)
-  Sparrows (dataverse)
=== Page 2 ===
start: 10  total: 12
-  Chestnut Sparrows (dataverse)
-  Wrens (dataverse)











          

      

      

    





  

    
      
          
            
  
Data Access API

The Data Access API provides programmatic download access to the files stored under Dataverse.
More advanced features of the Access API include format-specific transformations (thumbnail generation/resizing for images; converting tabular data into alternative file formats) and access to the data-level metadata that describes the contents of the tabular files.


Contents:


	Basic File Access


	Parameters:






	Multiple File (“bundle”) download


	Parameters:






	“All Formats” bundled access for Tabular Files.


	Parameters:






	Data Variable Metadata Access


	Preprocessed Data


	Authentication and Authorization


	Access Requests and Processing


	Allow Access Requests:


	Request Access:


	Grant File Access:


	Reject File Access:


	Revoke File Access:


	List File Access Requests:











Basic File Access

Basic access URI:

/api/access/datafile/$id


Note

Files can be accessed using persistent identifiers. This is done by passing the constant :persistentId where the numeric id of the file is expected, and then passing the actual persistent id as a query parameter with the name persistentId.

Example: Getting the file whose DOI is 10.5072/FK2/J8SJZB

GET http://$SERVER/api/access/datafile/:persistentId/?persistentId=doi:10.5072/FK2/J8SJZB








Parameters:

format

the following parameter values are supported (for tabular data files only):







	Value

	Description





	original

	“Saved Original”, the proprietary (SPSS, Stata, R, etc.) file from which the tabular data was ingested;



	RData

	Tabular data as an R Data frame (generated; unless the “original” file was in R);



	prep

	“Pre-processed data”, in JSON.



	subset

	Column-wise subsetting. You must also supply a comma separated list of variables in the “variables” query parameter. In this example, 123 and 127 are the database ids of data variables that belong to the data file with the id 6: curl 'http://localhost:8080/api/access/datafile/6?format=subset&variables=123,127'.








noVarHeader

(supported for tabular data files only; ignored for all other file types)







	Value

	Description





	true|1

	Tab-delimited data file, without the variable name header (added to tab. files by default)








imageThumb

the following parameter values are supported (for image and pdf files only):







	Value

	Description





	true

	Generates a thumbnail image, by rescaling to the default thumbnail size (64 pixels)



	N

	Rescales the image to N pixels.











Multiple File (“bundle”) download

/api/access/datafiles/$id1,$id2,...$idN

Returns the files listed, zipped.


Note

If files requested cannot be provided, a 207 status code will be returned indicating that the result was a mixed success.




Parameters:

format
the following parameter values are supported (for tabular data files only):







	Value

	Description





	original

	“Saved Original”, the proprietary (SPSS, Stata, R, etc.) file from which the tabular data was ingested;











“All Formats” bundled access for Tabular Files.

/api/access/datafile/bundle/$id

This is convenience packaging method is available for tabular data files.
It returns a zipped bundle that contains the data in the following formats:


	Tab-delimited;


	“Saved Original”, the proprietary (SPSS, Stata, R, etc.) file from which the tabular data was ingested;


	Generated R Data frame (unless the “original” above was in R);


	Data (Variable) metadata record, in DDI XML;


	File citation, in Endnote and RIS formats.





Parameters:

none.






Data Variable Metadata Access

These methods are only available for tabular data files. (i.e., data files with associated data table and variable objects).

/api/access/datafile/$id/metadata/ddi

In its basic form the verb above returns a DDI fragment that describes the file and the data variables in it.

The DDI returned will only have two top-level sections:


	a single fileDscr, with the basic file information plus the numbers of variables and observations and the UNF of the file.


	a single dataDscr section, with one var section for each variable.




Example:

http://localhost:8080/api/access/datafile/6/metadata/ddi

<codeBook version="2.0">
   <fileDscr ID="f6">
      <fileTxt>
         <fileName>_73084.tab</fileName>
         <dimensns>
            <caseQnty>3</caseQnty>
            <varQnty>2</varQnty>
         </dimensns>
         <fileType>text/tab-separated-values</fileType>
      </fileTxt>
      <notes level="file" type="VDC:UNF" subject="Universal Numeric Fingerprint">UNF:6:zChnyI3fjwNP+6qW0VryVQ==</notes>
   </fileDscr>
   <dataDscr>
      <var ID="v1" name="id" intrvl="discrete">
         <location fileid="f6"/>
         <labl level="variable">Personen-ID</labl>
         <sumStat type="mean">2.0</sumStat>
         <sumStat type="mode">.</sumStat>
         <sumStat type="medn">2.0</sumStat>
         <sumStat type="stdev">1.0</sumStat>
         <sumStat type="min">1.0</sumStat>
         <sumStat type="vald">3.0</sumStat>
         <sumStat type="invd">0.0</sumStat>
         <sumStat type="max">3.0</sumStat>
         <varFormat type="numeric"/>
         <notes subject="Universal Numeric Fingerprint" level="variable" type="VDC:UNF">UNF:6:AvELPR5QTaBbnq6S22Msow==</notes>
      </var>
      <var ID="v3" name="sex" intrvl="discrete">
         <location fileid="f6"/>
         <labl level="variable">Geschlecht</labl>
         <sumStat type="mean">1.3333333333333333</sumStat>
         <sumStat type="max">2.0</sumStat>
         <sumStat type="vald">3.0</sumStat>
         <sumStat type="mode">.</sumStat>
         <sumStat type="stdev">0.5773502691896257</sumStat>
         <sumStat type="invd">0.0</sumStat>
         <sumStat type="medn">1.0</sumStat>
         <sumStat type="min">1.0</sumStat>
         <catgry>
            <catValu>1</catValu>
            <labl level="category">Mann</labl>
         </catgry>
         <catgry>
            <catValu>2</catValu>
            <labl level="category">Frau</labl>
         </catgry>
         <varFormat type="numeric"/>
         <notes subject="Universal Numeric Fingerprint" level="variable" type="VDC:UNF">UNF:6:XqQaMwOA63taX1YyBzTZYQ==</notes>
      </var>
   </dataDscr>
</codeBook>





More information on DDI is available in the Tabular Data, Representation, Storage and Ingest section of the User Guide.

Advanced options/Parameters:

It is possible to request only specific subsets of, rather than the
full file-level DDI record. This can be a useful optimization, in
cases such as when an application needs to look up a single variable;
especially with data files with large numbers of variables. See
variables=123,127 in the example above.




Preprocessed Data

/api/access/datafile/$id/metadata/preprocessed

This method provides the “preprocessed data” - a summary record that describes the values of the data vectors in the tabular file, in JSON. These metadata values are used by TwoRavens, the companion data exploration utility of the Dataverse application. Please note that this format might change in the future.




Authentication and Authorization

Data Access API supports both session- and API key-based authentication.

If a session is available, and it is already associated with an authenticated user, it will be used for access authorization. If not, or if the user in question is not authorized to access the requested object, an attempt will be made to authorize based on an API key, if supplied.
All of the API verbs above support the key parameter key=... as well as the newer X-Dataverse-key header. For more details, see “Authentication” in the Introduction section.




Access Requests and Processing

All of the following endpoints take the persistent identifier as a parameter in place of ‘id’.


Allow Access Requests:

Allow or disallow users from requesting access to restricted files in a dataset where id is the database id of the dataset or pid is the persistent id (DOI or Handle) of the dataset to update.

A curl example using an id:

curl -H "X-Dataverse-key:$API_TOKEN" -X PUT -d true http://$SERVER/api/access/{id}/allowAccessRequest





A curl example using a pid:

curl -H "X-Dataverse-key:$API_TOKEN" -X PUT -d true http://$SERVER/api/access/:persistentId/allowAccessRequest?persistentId={pid}








Request Access:

/api/access/datafile/$id/requestAccess

This method requests access to the datafile whose id is passed on the behalf of an authenticated user whose key is passed. Note that not all datasets allow access requests to restricted files.

A curl example using an id:

curl -H "X-Dataverse-key:$API_TOKEN" -X PUT http://$SERVER/api/access/datafile/{id}/requestAccess








Grant File Access:

/api/access/datafile/{id}/grantAccess/{identifier}

This method grants access to the datafile whose id is passed on the behalf of an authenticated user whose user identifier is passed with an @ prefix. The key of a user who can manage permissions of the datafile is required to use this method.

A curl example using an id:

curl -H "X-Dataverse-key:$API_TOKEN" -X PUT http://$SERVER/api/access/datafile/{id}/grantAccess/{@userIdentifier}








Reject File Access:

/api/access/datafile/{id}/rejectAccess/{identifier}

This method rejects the access request to the datafile whose id is passed on the behalf of an authenticated user whose user identifier is passed with an @ prefix. The key of a user who can manage permissions of the datafile is required to use this method.

A curl example using an id:

curl -H "X-Dataverse-key:$API_TOKEN" -X PUT http://$SERVER/api/access/datafile/{id}/rejectAccess/{@userIdentifier}








Revoke File Access:

/api/access/datafile/{id}/revokeAccess/{identifier}

This method revokes previously granted access to the datafile whose id is passed on the behalf of an authenticated user whose user identifier is passed with an @ prefix. The key of a user who can manage permissions of the datafile is required to use this method.

A curl example using an id:

curl -H "X-Dataverse-key:$API_TOKEN" -X DELETE http://$SERVER/api/access/datafile/{id}/revokeAccess/{@userIdentifier}








List File Access Requests:

/api/access/datafile/{id}/listRequests

This method returns a list of Authenticated Users who have requested access to the datafile whose id is passed. The key of a user who can manage permissions of the datafile is required to use this method.

A curl example using an id:

curl -H "X-Dataverse-key:$API_TOKEN" -X GET http://$SERVER/api/access/datafile/{id}/listRequests













          

      

      

    





  

    
      
          
            
  
Native API

Dataverse 4 exposes most of its GUI functionality via a REST-based API. This section describes that functionality. Most API endpoints require an API token that can be passed as the X-Dataverse-key HTTP header or in the URL as the key query parameter.


Note


  CORS
 Some API endpoint allow CORS [https://www.w3.org/TR/cors/] (cross-origin resource sharing), which makes them usable from scripts runing in web browsers. These endpoints are marked with a CORS badge.




Warning

Dataverse 4’s API is versioned at the URI - all API calls may include the version number like so: http://server-address/api/v1/.... Omitting the v1 part would default to the latest API version (currently 1). When writing scripts/applications that will be used for a long time, make sure to specify the API version, so they don’t break when the API is upgraded.




Contents:


	Dataverses


	Create a Dataverse


	View a Dataverse


	Delete a Dataverse


	Show Contents of a Dataverse


	List Roles Defined in a Dataverse


	List Facets Configured for a Dataverse


	Set Facets for a Dataverse


	Create a New Role in a Dataverse


	List Role Assignments in a Dataverse


	Assign Default Role to User Creating a Dataset in a Dataverse


	Assign a New Role on a Dataverse


	Delete Role Assignment from a Dataverse


	List Metadata Blocks Defined on a Dataverse


	Define Metadata Blocks for a Dataverse


	Determine if a Dataverse Inherits Its Metadata Blocks from Its Parent


	Configure a Dataverse to Inherit Its Metadata Blocks from Its Parent


	Create a Dataset in a Dataverse


	Import a Dataset into a Dataverse


	Import a Dataset into a Dataverse with a DDI file


	Publish a Dataverse






	Datasets


	Get JSON Representation of a Dataset


	Delete Dataset


	List Versions of a Dataset


	Get Version of a Dataset


	Export Metadata of a Dataset in Various Formats


	Schema.org JSON-LD






	List Files in a Dataset


	List All Metadata Blocks for a Dataset


	List Single Metadata Block for a Dataset


	Update Metadata For a Dataset


	Edit Dataset Metadata


	Delete Dataset Metadata


	Publish a Dataset


	Delete Dataset Draft


	Set Citation Date Field for a Dataset


	Revert Citation Date Field to Default for Dataset


	List Role Assignments for a Dataset


	Create a Private URL for a Dataset


	Get the Private URL for a Dataset


	Delete the Private URL from a Dataset


	Add a File to a Dataset


	Submit a Dataset for Review


	Return a Dataset to Author


	Link a Dataset


	Dataset Locks






	Files


	Adding Files


	Accessing (downloading) files


	Restrict Files


	Replacing Files


	Uningest a File


	Reingest a File


	Provenance


	Datafile Integrity






	Builtin Users


	Create a Builtin User






	Roles


	Create a New Role in a Dataverse


	Show Role


	Delete Role






	Explicit Groups


	Create New Explicit Group


	List Explicit Groups in a Dataverse


	Show Single Group in a Dataverse


	Update Group in a Dataverse


	Delete Group from a Dataverse


	Add Multiple Role Assignees to an Explicit Group


	Add a Role Assignee to an Explicit Group


	Remove a Role Assignee from an Explicit Group






	Shibboleth Groups


	Info


	Show Dataverse Version and Build Number


	Show Dataverse Server Name


	Show Custom Popup Text for Publishing Datasets


	Get API Terms of Use URL






	Metadata Blocks


	Show Info About All Metadata Blocks


	Show Info About Single Metadata Block






	Notifications


	Get All Notifications by User






	Admin


	List All Database Settings


	Configure Database Setting


	Get Single Database Setting


	Delete Database Setting


	List Authentication Provider Factories


	List Authentication Providers


	Add Authentication Provider


	Show Authentication Provider


	Enable or Disable an Authentication Provider


	Check If an Authentication Provider is Enabled


	Delete an Authentication Provider


	List Global Roles


	Create Global Role


	List Users


	List Single User


	Make User a SuperUser


	List Role Assignments of a Role Assignee


	List Permissions a User Has on a Dataverse or Dataset


	Show Role Assignee


	Saved Search


	Dataset Integrity


	Workflows


	Metrics


	Inherit Dataverse Role Assignments











Dataverses


Create a Dataverse

Generates a new dataverse under $id. Expects a JSON content describing the dataverse, as in the example below.
If $id is omitted, a root dataverse is created. $id can either be a dataverse id (long) or a dataverse alias (more robust).

POST http://$SERVER/api/dataverses/$id?key=$apiKey





Download the JSON example file and modified to create dataverses to suit your needs. The fields name, alias, and dataverseContacts are required. The controlled vocabulary for dataverseType is


	DEPARTMENT


	JOURNALS


	LABORATORY


	ORGANIZATIONS_INSTITUTIONS


	RESEARCHERS


	RESEARCH_GROUP


	RESEARCH_PROJECTS


	TEACHING_COURSES


	UNCATEGORIZED




{
  "name": "Scientific Research",
  "alias": "science",
  "dataverseContacts": [
    {
      "contactEmail": "pi@example.edu"
    },
    {
      "contactEmail": "student@example.edu"
    }
  ],
  "affiliation": "Scientific Research University",
  "description": "We do all the science.",
  "dataverseType": "LABORATORY"
}








View a Dataverse


  CORS
 View data about the dataverse identified by $id. $id can be the id number of the dataverse, its alias, or the special value :root.

GET http://$SERVER/api/dataverses/$id








Delete a Dataverse

Deletes the dataverse whose ID is given:

DELETE http://$SERVER/api/dataverses/$id?key=$apiKey








Show Contents of a Dataverse


  CORS
 Lists all the DvObjects under dataverse id.

GET http://$SERVER/api/dataverses/$id/contents








List Roles Defined in a Dataverse

All the roles defined directly in the dataverse identified by id:

GET http://$SERVER/api/dataverses/$id/roles?key=$apiKey








List Facets Configured for a Dataverse


  CORS
 List all the facets for a given dataverse id.

GET http://$SERVER/api/dataverses/$id/facets?key=$apiKey








Set Facets for a Dataverse

Assign search facets for a given dataverse with alias $alias

curl -H "X-Dataverse-key: $apiKey" -X POST http://$server/api/dataverses/$alias/facets --upload-file facets.json

Where facets.json contains a JSON encoded list of metadata keys (e.g. ["authorName","authorAffiliation"]).




Create a New Role in a Dataverse

Creates a new role under dataverse id. Needs a json file with the role description:

POST http://$SERVER/api/dataverses/$id/roles?key=$apiKey





POSTed JSON example:

{
  "alias": "sys1",
  "name": “Restricted System Role”,
  "description": “A person who may only add datasets.”,
  "permissions": [
    "AddDataset"
  ]
}








List Role Assignments in a Dataverse

List all the role assignments at the given dataverse:

GET http://$SERVER/api/dataverses/$id/assignments?key=$apiKey








Assign Default Role to User Creating a Dataset in a Dataverse

Assign a default role to a user creating a dataset in a dataverse id where roleAlias is the database alias of the role to be assigned:

PUT http://$SERVER/api/dataverses/$id/defaultContributorRole/$roleAlias?key=$apiKey





Note: You may use “none” as the roleAlias. This will prevent a user who creates a dataset from having any role on that dataset. It is not recommended for dataverses with human contributors.




Assign a New Role on a Dataverse

Assigns a new role, based on the POSTed JSON.

POST http://$SERVER/api/dataverses/$id/assignments?key=$apiKey





POSTed JSON example:

{
  "assignee": "@uma",
  "role": "curator"
}








Delete Role Assignment from a Dataverse

Delete the assignment whose id is $id:

DELETE http://$SERVER/api/dataverses/$id/assignments/$id?key=$apiKey








List Metadata Blocks Defined on a Dataverse


  CORS
 Get the metadata blocks defined on the passed dataverse:

GET http://$SERVER/api/dataverses/$id/metadatablocks?key=$apiKey








Define Metadata Blocks for a Dataverse

Sets the metadata blocks of the dataverse. Makes the dataverse a metadatablock root. The query body is a JSON array with a list of metadatablocks identifiers (either id or name), such as “journal” and “geospatial” in the example below. Requires “EditDataverse” permission. In this example the “root” dataverse is being modified but you can substitute any dataverse alias:

curl -H "X-Dataverse-key:$API_TOKEN" -X POST -H "Content-type:application/json" -d "[\"journal\",\"geospatial\"]" http://localhost:8080/api/dataverses/:root/metadatablocks




Determine if a Dataverse Inherits Its Metadata Blocks from Its Parent

Get whether the dataverse is a metadata block root, or does it uses its parent blocks:

GET http://$SERVER/api/dataverses/$id/metadatablocks/isRoot?key=$apiKey








Configure a Dataverse to Inherit Its Metadata Blocks from Its Parent

Set whether the dataverse is a metadata block root, or does it uses its parent blocks. Possible
values are true and false (both are valid JSON expressions).

PUT http://$SERVER/api/dataverses/$id/metadatablocks/isRoot?key=$apiKey






Note

Previous endpoints GET http://$SERVER/api/dataverses/$id/metadatablocks/:isRoot?key=$apiKey and POST http://$SERVER/api/dataverses/$id/metadatablocks/:isRoot?key=$apiKey are deprecated, but supported.






Create a Dataset in a Dataverse

To create a dataset, you must create a JSON file containing all the metadata you want such as in this example file: dataset-finch1.json. Then, you must decide which dataverse to create the dataset in and target that datavese with either the “alias” of the dataverse (e.g. “root” or the database id of the dataverse (e.g. “1”). The initial version state will be set to DRAFT:

curl -H "X-Dataverse-key: $API_TOKEN" -X POST $SERVER_URL/api/dataverses/$DV_ALIAS/datasets --upload-file dataset-finch1.json








Import a Dataset into a Dataverse


Note

This action requires a Dataverse account with super-user permissions.



To import a dataset with an existing persistent identifier (PID), the dataset’s metadata should be prepared in Dataverse’s native JSON format. The PID is provided as a parameter at the URL. The following line imports a dataset with the PID PERSISTENT_IDENTIFIER to Dataverse, and then releases it:

curl -H "X-Dataverse-key: $API_TOKEN" -X POST $SERVER_URL/api/dataverses/$DV_ALIAS/datasets/:import?pid=$PERSISTENT_IDENTIFIER&release=yes --upload-file dataset.json





The pid parameter holds a persistent identifier (such as a DOI or Handle). The import will fail if no PID is provided, or if the provided PID fails validation.

The optional release parameter tells Dataverse to immediately publish the dataset. If the parameter is changed to no, the imported dataset will remain in DRAFT status.

The JSON format is the same as that supported by the native API’s create dataset command, although it also allows packages.  For example:

{
  "datasetVersion": {
    "termsOfUse": "CC0 Waiver",
    "license": "CC0",
    "protocol":"doi",
    "authority":"10.502",
    "identifier":"ZZ7/MOSEISLEYDB94",
    "metadataBlocks": {
      "citation": {
        "fields": [
          {
            "typeName": "title",
            "multiple": false,
            "value": "Imported dataset with package files No. 3",
            "typeClass": "primitive"
          },
          {
            "typeName": "productionDate",
            "multiple": false,
            "value": "2011-02-23",
            "typeClass": "primitive"
          },
          {
            "typeName": "dsDescription",
            "multiple": true,
            "value": [
              {
                "dsDescriptionValue": {
                  "typeName": "dsDescriptionValue",
                  "multiple": false,
                  "value": "Native Dataset",
                  "typeClass": "primitive"
                }
              }
            ],
            "typeClass": "compound"
          },
          {
            "typeName": "subject",
            "multiple": true,
            "value": [
              "Medicine, Health and Life Sciences"
            ],
            "typeClass": "controlledVocabulary"
          },
          {
            "typeName": "author",
            "multiple": true,
            "value": [
              {
                "authorAffiliation": {
                  "typeName": "authorAffiliation",
                  "multiple": false,
                  "value": "LibraScholar Medical School",
                  "typeClass": "primitive"
                },
                "authorName": {
                  "typeName": "authorName",
                  "multiple": false,
                  "value": "Doc, Bob",
                  "typeClass": "primitive"
                }
              },
              {
                "authorAffiliation": {
                  "typeName": "authorAffiliation",
                  "multiple": false,
                  "value": "LibraScholar Medical School",
                  "typeClass": "primitive"
                },
                "authorName": {
                  "typeName": "authorName",
                  "multiple": false,
                  "value": "Prof, Arthur",
                  "typeClass": "primitive"
                }
              }
            ],
            "typeClass": "compound"
          },
          {
            "typeName": "depositor",
            "multiple": false,
            "value": "Prof, Arthur",
            "typeClass": "primitive"
          },
          {
            "typeName": "datasetContact",
            "multiple": true,
            "value": [
              {
                "datasetContactEmail": {
                  "typeName": "datasetContactEmail",
                  "multiple": false,
                  "value": "aprof@mailinator.com",
                  "typeClass": "primitive"
                }
              }
            ],
            "typeClass": "compound"
          }
        ],
        "displayName": "Citation Metadata"
      }
    },
    "files": [
      {
        "description": "",
        "label": "pub",
        "restricted": false,
        "version": 1,
        "datasetVersionId": 1,
        "dataFile": {
          "id": 4,
          "filename": "pub",
          "contentType": "application/vnd.dataverse.file-package",
          "filesize": 1698795873,
          "description": "",
          "storageIdentifier": "162017e5ad5-ee2a2b17fee9",
          "originalFormatLabel": "UNKNOWN",
          "rootDataFileId": -1,
          "checksum": {
            "type": "SHA-1",
            "value": "54bc7ddb096a490474bd8cc90cbed1c96730f350"
          }
        }
      }
    ]
  }
}





Before calling the API, make sure the data files referenced by the POSTed JSON are placed in the dataset directory with filenames matching their specified storage identifiers. In installations using POSIX storage, these files must be made readable by GlassFish.


Tip

If possible, it’s best to avoid spaces and special characters in the storage identifier in order to avoid potential portability problems. The storage identifier corresponds with the filesystem name (or bucket identifier) of the data file, so these characters may cause unpredictability with filesystem tools.




Warning


	This API does not cover staging files (with correct contents, checksums, sizes, etc.) in the corresponding places in the Dataverse filestore.


	This API endpoint does not support importing files’ persistent identifiers.


	A Dataverse server can import datasets with a valid PID that uses a different protocol or authority than said server is configured for. However, the server will not update the PID metadata on subsequent update and publish actions.









Import a Dataset into a Dataverse with a DDI file


Note

This action requires a Dataverse account with super-user permissions.



To import a dataset with an existing persistent identifier (PID), you have to provide the PID as a parameter at the URL. The following line imports a dataset with the PID PERSISTENT_IDENTIFIER to Dataverse, and then releases it:

curl -H "X-Dataverse-key: $API_TOKEN" -X POST $SERVER_URL/api/dataverses/$DV_ALIAS/datasets/:importddi?pid=$PERSISTENT_IDENTIFIER&release=yes --upload-file ddi_dataset.xml





The optional pid parameter holds a persistent identifier (such as a DOI or Handle). The import will fail if the provided PID fails validation.

The optional release parameter tells Dataverse to immediately publish the dataset. If the parameter is changed to no, the imported dataset will remain in DRAFT status.

The file is a DDI xml file.


Warning


	This API does not handle files related to the DDI file.


	A Dataverse server can import datasets with a valid PID that uses a different protocol or authority than said server is configured for. However, the server will not update the PID metadata on subsequent update and publish actions.









Publish a Dataverse

Publish the Dataverse pointed by identifier, which can either by the dataverse alias or its numerical id.

POST http://$SERVER/api/dataverses/$identifier/actions/:publish?key=$apiKey










Datasets

Note Creation of new datasets is done with a POST onto dataverses. See Dataverses section.

Note In all commands below, dataset versions can be referred to as:


	:draft  the draft version, if any


	:latest either a draft (if exists) or the latest published version.


	:latest-published the latest published version


	x.y a specific version, where x is the major version number and y is the minor version number.


	x same as x.0





Get JSON Representation of a Dataset


Note

Datasets can be accessed using persistent identifiers. This is done by passing the constant :persistentId where the numeric id of the dataset is expected, and then passing the actual persistent id as a query parameter with the name persistentId.

Example: Getting the dataset whose DOI is 10.5072/FK2/J8SJZB

GET http://$SERVER/api/datasets/:persistentId/?persistentId=doi:10.5072/FK2/J8SJZB





Getting its draft version:

GET http://$SERVER/api/datasets/:persistentId/versions/:draft?persistentId=doi:10.5072/FK2/J8SJZB








  CORS
 Show the dataset whose id is passed:

GET http://$SERVER/api/datasets/$id?key=$apiKey








Delete Dataset

Delete the dataset whose id is passed:

DELETE http://$SERVER/api/datasets/$id?key=$apiKey








List Versions of a Dataset


  CORS
 List versions of the dataset:

GET http://$SERVER/api/datasets/$id/versions?key=$apiKey








Get Version of a Dataset


  CORS
 Show a version of the dataset. The Dataset also include any metadata blocks the data might have:

GET http://$SERVER/api/datasets/$id/versions/$versionNumber?key=$apiKey








Export Metadata of a Dataset in Various Formats


  CORS
 Export the metadata of the current published version of a dataset in various formats see Note below:

GET http://$SERVER/api/datasets/export?exporter=ddi&persistentId=$persistentId






Note

Supported exporters (export formats) are ddi, oai_ddi, dcterms, oai_dc, schema.org , and dataverse_json.




Schema.org JSON-LD

Please note that the schema.org format has changed in backwards-incompatible ways after Dataverse 4.9.4:


	“description” was a single string and now it is an array of strings.


	“citation” was an array of strings and now it is an array of objects.




Both forms are valid according to Google’s Structured Data Testing Tool at https://search.google.com/structured-data/testing-tool . (This tool will report “The property affiliation is not recognized by Google for an object of type Thing” and this known issue is being tracked at https://github.com/IQSS/dataverse/issues/5029 .) Schema.org JSON-LD is an evolving standard that permits a great deal of flexibility. For example, https://schema.org/docs/gs.html#schemaorg_expected indicates that even when objects are expected, it’s ok to just use text. As with all metadata export formats, we will try to keep the Schema.org JSON-LD format Dataverse emits backward-compatible to made integrations more stable, despite the flexibility that’s afforded by the standard.






List Files in a Dataset


  CORS
 Lists all the file metadata, for the given dataset and version:

GET http://$SERVER/api/datasets/$id/versions/$versionId/files?key=$apiKey








List All Metadata Blocks for a Dataset


  CORS
 Lists all the metadata blocks and their content, for the given dataset and version:

GET http://$SERVER/api/datasets/$id/versions/$versionId/metadata?key=$apiKey








List Single Metadata Block for a Dataset


  CORS
 Lists the metadata block block named blockname, for the given dataset and version:

GET http://$SERVER/api/datasets/$id/versions/$versionId/metadata/$blockname?key=$apiKey








Update Metadata For a Dataset

Updates the metadata for a dataset. If a draft of the dataset already exists, the metadata of that draft is overwritten; otherwise, a new draft is created with this metadata.

You must download a JSON representation of the dataset, edit the JSON you download, and then send the updated JSON to the Dataverse server.

For example, after making your edits, your JSON file might look like dataset-update-metadata.json which you would send to Dataverse like this:

curl -H "X-Dataverse-key: $API_TOKEN" -X PUT $SERVER_URL/api/datasets/:persistentId/versions/:draft?persistentId=$PID --upload-file dataset-update-metadata.json





Note that in the example JSON file above, there is a single JSON object with metadataBlocks as a key. When you download a representation of your dataset in JSON format, the metadataBlocks object you need is nested inside another object called json. To extract just the metadataBlocks key when downloading a JSON representation, you can use a tool such as jq like this:

curl -H "X-Dataverse-key: $API_TOKEN" $SERVER_URL/api/datasets/:persistentId/versions/:latest?persistentId=$PID | jq '.data | {metadataBlocks: .metadataBlocks}' > dataset-update-metadata.json





Now that the resulting JSON file only contains the metadataBlocks key, you can edit the JSON such as with vi in the example below:

vi dataset-update-metadata.json





Now that you’ve made edits to the metadata in your JSON file, you can send it to Dataverse as described above.




Edit Dataset Metadata

Alternatively to replacing an entire dataset version with its JSON representation you may add data to dataset fields that are blank or accept multiple values with the following

curl -H "X-Dataverse-key: $API_TOKEN" -X PUT $SERVER_URL/api/datasets/:persistentId/editMetadata/?persistentId=$PID --upload-file dataset-add-metadata.json





You may also replace existing metadata in dataset fields with the following (adding the parameter replace=true)

curl -H "X-Dataverse-key: $API_TOKEN" -X PUT $SERVER_URL/api/datasets/:persistentId/editMetadata?persistentId=$PID&replace=true --upload-file dataset-update-metadata.json





For these edits your JSON file need only include those dataset fields which you would like to edit. A sample JSON file may be downloaded here: dataset-edit-metadata-sample.json




Delete Dataset Metadata

You may delete some of the metadata of a dataset version by supplying a file with a JSON representation of dataset fields that you would like to delete with the following

curl -H "X-Dataverse-key: $API_TOKEN" -X PUT $SERVER_URL/api/datasets/:persistentId/deleteMetadata/?persistentId=$PID --upload-file dataset-delete-author-metadata.json





For these deletes your JSON file must include an exact match of those dataset fields which you would like to delete. A sample JSON file may be downloaded here: dataset-delete-author-metadata.json




Publish a Dataset

Publishes the dataset whose id is passed. If this is the first version of the dataset, its version number will be set to 1.0. Otherwise, the new dataset version number is determined by the most recent version number and the type parameter. Passing type=minor increases the minor version number (2.3 is updated to 2.4). Passing type=major increases the major version number (2.3 is updated to 3.0).

POST http://$SERVER/api/datasets/$id/actions/:publish?type=$type&key=$apiKey






Note

POST should be used to publish a dataset. GET is supported for backward compatibility but is deprecated and may be removed: https://github.com/IQSS/dataverse/issues/2431




Note

When there are no default workflows, a successful publication process will result in 200 OK response. When there are workflows, it is impossible for Dataverse to know
how long they are going to take and whether they will succeed or not (recall that some stages might require human intervention). Thus,
a 202 ACCEPTED is returned immediately. To know whether the publication process succeeded or not, the client code has to check the status of the dataset periodically,
or perform some push request in the post-publish workflow.






Delete Dataset Draft

Deletes the draft version of dataset $id. Only the draft version can be deleted:

DELETE http://$SERVER/api/datasets/$id/versions/:draft?key=$apiKey








Set Citation Date Field for a Dataset

Sets the dataset field type to be used as the citation date for the given dataset (if the dataset does not include the dataset field type, the default logic is used). The name of the dataset field type should be sent in the body of the reqeust.
To revert to the default logic, use :publicationDate as the $datasetFieldTypeName.
Note that the dataset field used has to be a date field:

PUT http://$SERVER/api/datasets/$id/citationdate?key=$apiKey








Revert Citation Date Field to Default for Dataset

Restores the default logic of the field type to be used as the citation date. Same as PUT with :publicationDate body:

DELETE http://$SERVER/api/datasets/$id/citationdate?key=$apiKey








List Role Assignments for a Dataset

List all the role assignments at the given dataset:

GET http://$SERVER/api/datasets/$id/assignments?key=$apiKey








Create a Private URL for a Dataset

Create a Private URL (must be able to manage dataset permissions):

POST http://$SERVER/api/datasets/$id/privateUrl?key=$apiKey








Get the Private URL for a Dataset

Get a Private URL from a dataset (if available):

GET http://$SERVER/api/datasets/$id/privateUrl?key=$apiKey








Delete the Private URL from a Dataset

Delete a Private URL from a dataset (if it exists):

DELETE http://$SERVER/api/datasets/$id/privateUrl?key=$apiKey








Add a File to a Dataset

Add a file to an existing Dataset. Description and tags are optional:

POST http://$SERVER/api/datasets/$id/add?key=$apiKey





A more detailed “add” example using curl:

curl -H "X-Dataverse-key:$API_TOKEN" -X POST -F 'file=@data.tsv' -F 'jsonData={"description":"My description.","categories":["Data"], "restrict":"true"}' "https://example.dataverse.edu/api/datasets/:persistentId/add?persistentId=$PERSISTENT_ID"





Example python code to add a file. This may be run by changing these parameters in the sample code:


	dataverse_server - e.g. https://demo.dataverse.org


	api_key - See the top of this document for a description


	persistentId - Example: doi:10.5072/FK2/6XACVA


	dataset_id - Database id of the dataset




In practice, you only need one the dataset_id or the persistentId. The example below shows both uses.

from datetime import datetime
import json
import requests  # http://docs.python-requests.org/en/master/

# --------------------------------------------------
# Update the 4 params below to run this code
# --------------------------------------------------
dataverse_server = 'https://your dataverse server' # no trailing slash
api_key = 'api key'
dataset_id = 1  # database id of the dataset
persistentId = 'doi:10.5072/FK2/6XACVA' # doi or hdl of the dataset

# --------------------------------------------------
# Prepare "file"
# --------------------------------------------------
file_content = 'content: %s' % datetime.now()
files = {'file': ('sample_file.txt', file_content)}

# --------------------------------------------------
# Using a "jsonData" parameter, add optional description + file tags
# --------------------------------------------------
params = dict(description='Blue skies!',
            categories=['Lily', 'Rosemary', 'Jack of Hearts'])

params_as_json_string = json.dumps(params)

payload = dict(jsonData=params_as_json_string)

# --------------------------------------------------
# Add file using the Dataset's id
# --------------------------------------------------
url_dataset_id = '%s/api/datasets/%s/add?key=%s' % (dataverse_server, dataset_id, api_key)

# -------------------
# Make the request
# -------------------
print '-' * 40
print 'making request: %s' % url_dataset_id
r = requests.post(url_dataset_id, data=payload, files=files)

# -------------------
# Print the response
# -------------------
print '-' * 40
print r.json()
print r.status_code

# --------------------------------------------------
# Add file using the Dataset's persistentId (e.g. doi, hdl, etc)
# --------------------------------------------------
url_persistent_id = '%s/api/datasets/:persistentId/add?persistentId=%s&key=%s' % (dataverse_server, persistentId, api_key)

# -------------------
# Update the file content to avoid a duplicate file error
# -------------------
file_content = 'content2: %s' % datetime.now()
files = {'file': ('sample_file2.txt', file_content)}


# -------------------
# Make the request
# -------------------
print '-' * 40
print 'making request: %s' % url_persistent_id
r = requests.post(url_persistent_id, data=payload, files=files)

# -------------------
# Print the response
# -------------------
print '-' * 40
print r.json()
print r.status_code








Submit a Dataset for Review

When dataset authors do not have permission to publish directly, they can click the “Submit for Review” button in the web interface (see Dataset + File Management), or perform the equivalent operation via API:

curl -H "X-Dataverse-key: $API_TOKEN" -X POST "$SERVER_URL/api/datasets/:persistentId/submitForReview?persistentId=$DOI_OR_HANDLE_OF_DATASET"





The people who need to review the dataset (often curators or journal editors) can check their notifications periodically via API to see if any new datasets have been submitted for review and need their attention. See the Notifications section for details. Alternatively, these curators can simply check their email or notifications to know when datasets have been submitted (or resubmitted) for review.




Return a Dataset to Author

After the curators or journal editors have reviewed a dataset that has been submitted for review (see “Submit for Review”, above) they can either choose to publish the dataset (see the :publish “action” above) or return the dataset to its authors. In the web interface there is a “Return to Author” button (see Dataset + File Management), but the interface does not provide a way to explain why the dataset is being returned. There is a way to do this outside of this interface, however. Instead of clicking the “Return to Author” button in the UI, a curator can write a “reason for return” into the database via API.

Here’s how curators can send a “reason for return” to the dataset authors. First, the curator creates a JSON file that contains the reason for return:

{
  "reasonForReturn": "You forgot to upload any files."
}





In the example below, the curator has saved the JSON file as reason-for-return.json in their current working directory. Then, the curator sends this JSON file to the returnToAuthor API endpoint like this:

curl -H "Content-type:application/json" -d @reason-for-return.json -H "X-Dataverse-key: $API_TOKEN" -X POST "$SERVER_URL/api/datasets/:persistentId/returnToAuthor?persistentId=$DOI_OR_HANDLE_OF_DATASET"





The review process can sometimes resemble a tennis match, with the authors submitting and resubmitting the dataset over and over until the curators are satisfied. Each time the curators send a “reason for return” via API, that reason is persisted into the database, stored at the dataset version level.




Link a Dataset

Creates a link between a dataset and a dataverse (see the Linked Dataverses + Linked Datasets section of the Dataverse Management guide for more information).

curl -H "X-Dataverse-key: $API_TOKEN" -X PUT http://$SERVER/api/datasets/$linked-dataset-id/link/$linking-dataverse-alias








Dataset Locks

To check if a dataset is locked:

curl "$SERVER_URL/api/datasets/{database_id}/locks





Optionally, you can check if there’s a lock of a specific type on the dataset:

curl "$SERVER_URL/api/datasets/{database_id}/locks?type={lock_type}





Currently implemented lock types are Ingest, Workflow, InReview, DcmUpload and pidRegister.

The API will output the list of locks, for example:

{"status":"OK","data":
    [
            {
             "lockType":"Ingest",
             "date":"Fri Aug 17 15:05:51 EDT 2018",
             "user":"dataverseAdmin"
            },
            {
             "lockType":"Workflow",
             "date":"Fri Aug 17 15:02:00 EDT 2018",
             "user":"dataverseAdmin"
            }
    ]
}





If the dataset is not locked (or if there is no lock of the requested type), the API will return an empty list.

The following API end point will lock a Dataset with a lock of specified type:

POST /api/datasets/{database_id}/lock/{lock_type}





For example:

curl -X POST "$SERVER_URL/api/datasets/1234/lock/Ingest?key=$ADMIN_API_TOKEN"
or
curl -X POST -H "X-Dataverse-key: $ADMIN_API_TOKEN" "$SERVER_URL/api/datasets/:persistentId/lock/Ingest?persistentId=$DOI_OR_HANDLE_OF_DATASET"





Use the following API to unlock the dataset, by deleting all the locks currently on the dataset:

DELETE /api/datasets/{database_id}/locks





Or, to delete a lock of the type specified only:

DELETE /api/datasets/{database_id}/locks?type={lock_type}





For example:

curl -X DELETE -H "X-Dataverse-key: $ADMIN_API_TOKEN" "$SERVER_URL/api/datasets/1234/locks?type=pidRegister"





If the dataset is not locked (or if there is no lock of the specified type), the API will exit with a warning message.

(Note that the API calls above all support both the database id and persistent identifier notation for referencing the dataset)






Files


Adding Files


Note

Files can be added via the native API but the operation is performed on the parent object, which is a dataset. Please see the Datasets endpoint above for more information.






Accessing (downloading) files


Note

Access API has its own section in the Guide: Data Access API



Note Data Access API calls can now be made using persistent identifiers (in addition to database ids). This is done by passing the constant :persistentId where the numeric id of the file is expected, and then passing the actual persistent id as a query parameter with the name persistentId.


Example: Getting the file whose DOI is 10.5072/FK2/J8SJZB

GET http://$SERVER/api/access/datafile/:persistentId/?persistentId=doi:10.5072/FK2/J8SJZB











Restrict Files

Restrict or unrestrict an existing file where id is the database id of the file or pid is the persistent id (DOI or Handle) of the file to restrict. Note that some Dataverse installations do not allow the ability to restrict files.

A curl example using an id:

curl -H "X-Dataverse-key:$API_TOKEN" -X PUT -d true http://$SERVER/api/files/{id}/restrict





A curl example using a pid:

curl -H "X-Dataverse-key:$API_TOKEN" -X PUT -d true http://$SERVER/api/files/:persistentId/restrict?persistentId={pid}








Replacing Files

Replace an existing file where id is the database id of the file to replace or pid is the persistent id (DOI or Handle) of the file. Note that metadata such as description and tags are not carried over from the file being replaced

curl -H "X-Dataverse-key:$API_TOKEN" -X POST -F 'file=@data.tsv' \
-F 'jsonData={"description":"My description.","categories":["Data"],"forceReplace":false}'\
"https://demo.dataverse.org/api/files/$FILE_ID/replace"





Example python code to replace a file.  This may be run by changing these parameters in the sample code:


	dataverse_server - e.g. https://demo.dataverse.org


	api_key - See the top of this document for a description


	file_id - Database id of the file to replace (returned in the GET API for a Dataset)




from datetime import datetime
import json
import requests  # http://docs.python-requests.org/en/master/

# --------------------------------------------------
# Update params below to run code
# --------------------------------------------------
dataverse_server = 'http://127.0.0.1:8080' # no trailing slash
api_key = 'some key'
file_id = 1401  # id of the file to replace

# --------------------------------------------------
# Prepare replacement "file"
# --------------------------------------------------
file_content = 'content: %s' % datetime.now()
files = {'file': ('replacement_file.txt', file_content)}

# --------------------------------------------------
# Using a "jsonData" parameter, add optional description + file tags
# --------------------------------------------------
params = dict(description='Sunset',
            categories=['One', 'More', 'Cup of Coffee'])

# -------------------
# IMPORTANT: If the mimetype of the replacement file differs
#   from the origina file, the replace will fail
#
#  e.g. if you try to replace a ".csv" with a ".png" or something similar
#
#  You can override this with a "forceReplace" parameter
# -------------------
params['forceReplace'] = True


params_as_json_string = json.dumps(params)

payload = dict(jsonData=params_as_json_string)

print 'payload', payload
# --------------------------------------------------
# Replace file using the id of the file to replace
# --------------------------------------------------
url_replace = '%s/api/v1/files/%s/replace?key=%s' % (dataverse_server, file_id, api_key)

# -------------------
# Make the request
# -------------------
print '-' * 40
print 'making request: %s' % url_replace
r = requests.post(url_replace, data=payload, files=files)

# -------------------
# Print the response
# -------------------
print '-' * 40
print r.json()
print r.status_code








Uningest a File

Reverse the tabular data ingest process performed on a file where {id} is the database id of the file to process. Note that this requires “super user” credentials:

POST http://$SERVER/api/files/{id}/uningest?key={apiKey}








Reingest a File

Attempt to ingest an existing datafile as tabular data. This API can be used on a file that was not ingested as tabular back when it was uploaded. For example, a Stata v.14 file that was uploaded before ingest support for Stata 14 was added (in Dataverse v.4.9). It can also be used on a file that failed to ingest due to a bug in the ingest plugin that has since been fixed (hence the name “re-ingest”).

Note that this requires “super user” credentials:

POST http://$SERVER/api/files/{id}/reingest?key={apiKey}





({id} is the database id of the file to process)

Also, note that, at present the API cannot be used on a file that’s already ingested as tabular.




Provenance

Get Provenance JSON for an uploaded file:

GET http://$SERVER/api/files/{id}/prov-json?key=$apiKey





Get Provenance Description for an uploaded file:

GET http://$SERVER/api/files/{id}/prov-freeform?key=$apiKey





Create/Update Provenance JSON and provide related entity name for an uploaded file:

POST http://$SERVER/api/files/{id}/prov-json?key=$apiKey&entityName=$entity -H "Content-type:application/json" --upload-file $filePath





Create/Update Provenance Description for an uploaded file. Requires a JSON file with the description connected to a key named “text”:

POST http://$SERVER/api/files/{id}/prov-freeform?key=$apiKey -H "Content-type:application/json" --upload-file $filePath





Delete Provenance JSON for an uploaded file:

DELETE http://$SERVER/api/files/{id}/prov-json?key=$apiKey








Datafile Integrity

Starting the release 4.10 the size of the saved original file (for an ingested tabular datafile) is stored in the database. The following API will retrieve and permanently store the sizes for any already existing saved originals:

GET http://$SERVER/api/admin/datafiles/integrity/fixmissingoriginalsizes{?limit=N}





Note the optional “limit” parameter. Without it, the API will attempt to populate the sizes for all the saved originals that don’t have them in the database yet. Otherwise it will do so for the first N such datafiles.






Builtin Users

Builtin users are known as “Username/Email and Password” users in the Account Creation + Management of the User Guide. Dataverse stores a password (encrypted, of course) for these users, which differs from “remote” users such as Shibboleth or OAuth users where the password is stored elsewhere. See also “Auth Modes: Local vs. Remote vs. Both” in the Configuration section of the Installation Guide. It’s a valid configuration of Dataverse to not use builtin users at all.


Create a Builtin User

For security reasons, builtin users cannot be created via API unless the team who runs the Dataverse installation has populated a database setting called BuiltinUsers.KEY, which is described under “Securing Your Installation” and “Database Settings” in the Configuration section of the Installation Guide. You will need to know the value of BuiltinUsers.KEY before you can proceed.

To create a builtin user via API, you must first construct a JSON document.  You can download user-add.json or copy the text below as a starting point and edit as necessary.

{
  "firstName": "Lisa",
  "lastName": "Simpson",
  "userName": "lsimpson",
  "affiliation": "Springfield",
  "position": "Student",
  "email": "lsimpson@mailinator.com"
}





Place this user-add.json file in your current directory and run the following curl command, substituting variables as necessary. Note that both the password of the new user and the value of BuiltinUsers.KEY are passed as query parameters:

curl -d @user-add.json -H "Content-type:application/json" "$SERVER_URL/api/builtin-users?password=$NEWUSER_PASSWORD&key=$BUILTIN_USERS_KEY"










Roles


Create a New Role in a Dataverse

Creates a new role in dataverse object whose Id is dataverseIdtf (that’s an id/alias):

POST http://$SERVER/api/roles?dvo=$dataverseIdtf&key=$apiKey








Show Role

Shows the role with id:

GET http://$SERVER/api/roles/$id








Delete Role

Deletes the role with id:

DELETE http://$SERVER/api/roles/$id










Explicit Groups


Create New Explicit Group

Explicit groups list their members explicitly. These groups are defined in dataverses, which is why their API endpoint is under api/dataverses/$id/, where $id is the id of the dataverse.

Create a new explicit group under dataverse $id:

POST http://$server/api/dataverses/$id/groups





Data being POSTed is json-formatted description of the group:

{
 "description":"Describe the group here",
 "displayName":"Close Collaborators",
 "aliasInOwner":"ccs"
}








List Explicit Groups in a Dataverse

List explicit groups under dataverse $id:

GET http://$server/api/dataverses/$id/groups








Show Single Group in a Dataverse

Show group $groupAlias under dataverse $dv:

GET http://$server/api/dataverses/$dv/groups/$groupAlias








Update Group in a Dataverse

Update group $groupAlias under dataverse $dv. The request body is the same as the create group one, except that the group alias cannot be changed. Thus, the field aliasInOwner is ignored.

PUT http://$server/api/dataverses/$dv/groups/$groupAlias








Delete Group from a Dataverse

Delete group $groupAlias under dataverse $dv:

DELETE http://$server/api/dataverses/$dv/groups/$groupAlias








Add Multiple Role Assignees to an Explicit Group

Bulk add role assignees to an explicit group. The request body is a JSON array of role assignee identifiers, such as @admin, &ip/localhosts or :authenticated-users:

POST http://$server/api/dataverses/$dv/groups/$groupAlias/roleAssignees








Add a Role Assignee to an Explicit Group

Add a single role assignee to a group. Request body is ignored:

PUT http://$server/api/dataverses/$dv/groups/$groupAlias/roleAssignees/$roleAssigneeIdentifier








Remove a Role Assignee from an Explicit Group

Remove a single role assignee from an explicit group:

DELETE http://$server/api/dataverses/$dv/groups/$groupAlias/roleAssignees/$roleAssigneeIdentifier










Shibboleth Groups

Management of Shibboleth groups via API is documented in the Shibboleth section of the Installation Guide.




Info


Show Dataverse Version and Build Number


  CORS
 Get the Dataverse version. The response contains the version and build numbers:

GET http://$SERVER/api/info/version








Show Dataverse Server Name

Get the server name. This is useful when a Dataverse system is composed of multiple Java EE servers behind a load balancer:

GET http://$SERVER/api/info/server








Show Custom Popup Text for Publishing Datasets

For now, only the value for the :DatasetPublishPopupCustomText setting from the Configuration section of the Installation Guide is exposed:

GET http://$SERVER/api/info/settings/:DatasetPublishPopupCustomText








Get API Terms of Use URL

Get API Terms of Use. The response contains the text value inserted as API Terms of use which uses the database setting  :ApiTermsOfUse:

GET http://$SERVER/api/info/apiTermsOfUse










Metadata Blocks


Show Info About All Metadata Blocks


  CORS
 Lists brief info about all metadata blocks registered in the system:

GET http://$SERVER/api/metadatablocks








Show Info About Single Metadata Block


  CORS
 Return data about the block whose identifier is passed. identifier can either be the block’s id, or its name:

GET http://$SERVER/api/metadatablocks/$identifier










Notifications


Get All Notifications by User

Each user can get a dump of their notifications by passing in their API token:

curl -H "X-Dataverse-key:$API_TOKEN" $SERVER_URL/api/notifications/all










Admin

This is the administrative part of the API. For security reasons, it is absolutely essential that you block it before allowing public access to a Dataverse installation. Blocking can be done using settings. See the post-install-api-block.sh script in the scripts/api folder for details. See also “Blocking API Endpoints” under “Securing Your Installation” in the Configuration section of the Installation Guide.


List All Database Settings

List all settings:

GET http://$SERVER/api/admin/settings








Configure Database Setting

Sets setting name to the body of the request:

PUT http://$SERVER/api/admin/settings/$name








Get Single Database Setting

Get the setting under name:

GET http://$SERVER/api/admin/settings/$name








Delete Database Setting

Delete the setting under name:

DELETE http://$SERVER/api/admin/settings/$name








List Authentication Provider Factories

List the authentication provider factories. The alias field of these is used while configuring the providers themselves.

GET http://$SERVER/api/admin/authenticationProviderFactories








List Authentication Providers

List all the authentication providers in the system (both enabled and disabled):

GET http://$SERVER/api/admin/authenticationProviders








Add Authentication Provider

Add new authentication provider. The POST data is in JSON format, similar to the JSON retrieved from this command’s GET counterpart.

POST http://$SERVER/api/admin/authenticationProviders








Show Authentication Provider

Show data about an authentication provider:

GET http://$SERVER/api/admin/authenticationProviders/$id








Enable or Disable an Authentication Provider

Enable or disable an authentication provider (denoted by id):

PUT http://$SERVER/api/admin/authenticationProviders/$id/enabled






Note

The former endpoint, ending with :enabled (that is, with a colon), is still supported, but deprecated.






Check If an Authentication Provider is Enabled

Check whether an authentication proider is enabled:

GET http://$SERVER/api/admin/authenticationProviders/$id/enabled





The body of the request should be either true or false. Content type has to be application/json, like so:

curl -H "Content-type: application/json"  -X POST -d"false" http://localhost:8080/api/admin/authenticationProviders/echo-dignified/:enabled








Delete an Authentication Provider

Deletes an authentication provider from the system. The command succeeds even if there is no such provider, as the postcondition holds: there is no provider by that id after the command returns.

DELETE http://$SERVER/api/admin/authenticationProviders/$id/








List Global Roles

List all global roles in the system.

GET http://$SERVER/api/admin/roles








Create Global Role

Creates a global role in the Dataverse installation. The data POSTed are assumed to be a role JSON.

POST http://$SERVER/api/admin/roles








List Users

List users with the options to search and “page” through results. Only accessible to superusers. Optional parameters:


	searchTerm A string that matches the beginning of a user identifier, first name, last name or email address.


	itemsPerPage The number of detailed results to return.  The default is 25.  This number has no limit. e.g. You could set it to 1000 to return 1,000 results


	selectedPage The page of results to return.  The default is 1.




GET http://$SERVER/api/admin/list-users





Sample output appears below.


	When multiple pages of results exist, the selectedPage parameters may be specified.


	Note, the resulting pagination section includes pageCount, previousPageNumber, nextPageNumber, and other variables that may be used to re-create the UI.




{
    "status":"OK",
    "data":{
        "userCount":27,
        "selectedPage":1,
        "pagination":{
            "isNecessary":true,
            "numResults":27,
            "numResultsString":"27",
            "docsPerPage":25,
            "selectedPageNumber":1,
            "pageCount":2,
            "hasPreviousPageNumber":false,
            "previousPageNumber":1,
            "hasNextPageNumber":true,
            "nextPageNumber":2,
            "startResultNumber":1,
            "endResultNumber":25,
            "startResultNumberString":"1",
            "endResultNumberString":"25",
            "remainingResults":2,
            "numberNextResults":2,
            "pageNumberList":[
                1,
                2
            ]
        },
        "bundleStrings":{
            "userId":"ID",
            "userIdentifier":"Username",
            "lastName":"Last Name ",
            "firstName":"First Name ",
            "email":"Email",
            "affiliation":"Affiliation",
            "position":"Position",
            "isSuperuser":"Superuser",
            "authenticationProvider":"Authentication",
            "roles":"Roles",
            "createdTime":"Created Time",
            "lastLoginTime":"Last Login Time",
            "lastApiUseTime":"Last API Use Time"
        },
        "users":[
            {
                "id":8,
                "userIdentifier":"created1",
                "lastName":"created1",
                "firstName":"created1",
                "email":"created1@g.com",
                "affiliation":"hello",
                "isSuperuser":false,
                "authenticationProvider":"BuiltinAuthenticationProvider",
                "roles":"Curator",
                "createdTime":"2017-06-28 10:36:29.444"
            },
            {
                "id":9,
                "userIdentifier":"created8",
                "lastName":"created8",
                "firstName":"created8",
                "email":"created8@g.com",
                "isSuperuser":false,
                "authenticationProvider":"BuiltinAuthenticationProvider",
                "roles":"Curator",
                "createdTime":"2000-01-01 00:00:00.0"
            },
            {
                "id":1,
                "userIdentifier":"dataverseAdmin",
                "lastName":"Admin",
                "firstName":"Dataverse",
                "email":"dataverse@mailinator2.com",
                "affiliation":"Dataverse.org",
                "position":"Admin",
                "isSuperuser":true,
                "authenticationProvider":"BuiltinAuthenticationProvider",
                "roles":"Admin, Contributor",
                "createdTime":"2000-01-01 00:00:00.0",
                "lastLoginTime":"2017-07-03 12:22:35.926",
                "lastApiUseTime":"2017-07-03 12:55:57.186"
            }

            // ... 22 more user documents ...
        ]
    }
}






Note

“List all users” GET http://$SERVER/api/admin/authenticatedUsers is deprecated, but supported.






List Single User

List user whose identifier (without the @ sign) is passed:

GET http://$SERVER/api/admin/authenticatedUsers/$identifier





Sample output using “dataverseAdmin” as the identifier:

{
  "authenticationProviderId": "builtin",
  "persistentUserId": "dataverseAdmin",
  "position": "Admin",
  "id": 1,
  "identifier": "@dataverseAdmin",
  "displayName": "Dataverse Admin",
  "firstName": "Dataverse",
  "lastName": "Admin",
  "email": "dataverse@mailinator.com",
  "superuser": true,
  "affiliation": "Dataverse.org"
}





Create an authenticateUser:

POST http://$SERVER/api/admin/authenticatedUsers





POSTed JSON example:

{
  "authenticationProviderId": "orcid",
  "persistentUserId": "0000-0002-3283-0661",
  "identifier": "@pete",
  "firstName": "Pete K.",
  "lastName": "Dataversky",
  "email": "pete@mailinator.com"
}








Make User a SuperUser

Toggles superuser mode on the AuthenticatedUser whose identifier (without the @ sign) is passed.

POST http://$SERVER/api/admin/superuser/$identifier








List Role Assignments of a Role Assignee

List all role assignments of a role assignee (i.e. a user or a group):

GET http://$SERVER/api/admin/assignments/assignees/$identifier





Note that identifier can contain slashes (e.g. &ip/localhost-users).




List Permissions a User Has on a Dataverse or Dataset

List permissions a user (based on API Token used) has on a dataverse or dataset:

GET http://$SERVER/api/admin/permissions/$identifier





The $identifier can be a dataverse alias or database id or a dataset persistent ID or database id.




Show Role Assignee

List a role assignee (i.e. a user or a group):

GET http://$SERVER/api/admin/assignee/$identifier





The $identifier should start with an @ if it’s a user. Groups start with &. “Built in” users and groups start with :. Private URL users start with #.




Saved Search

The Saved Search, Linked Dataverses, and Linked Datasets features shipped with Dataverse 4.0, but as a “superuser-only [https://github.com/IQSS/dataverse/issues/90#issuecomment-86094663]” because they are experimental (see #1364 [https://github.com/IQSS/dataverse/issues/1364], #1813 [https://github.com/IQSS/dataverse/issues/1813], #1840 [https://github.com/IQSS/dataverse/issues/1840], #1890 [https://github.com/IQSS/dataverse/issues/1890], #1939 [https://github.com/IQSS/dataverse/issues/1939], #2167 [https://github.com/IQSS/dataverse/issues/2167], #2186 [https://github.com/IQSS/dataverse/issues/2186], #2053 [https://github.com/IQSS/dataverse/issues/2053], and #2543 [https://github.com/IQSS/dataverse/issues/2543]). The following API endpoints were added to help people with access to the “admin” API make use of these features in their current form. Of particular interest should be the “makelinks” endpoint because it needs to be called periodically (via cron or similar) to find new dataverses and datasets that match the saved search and then link the search results to the dataverse in which the saved search is defined (#2531 [https://github.com/IQSS/dataverse/issues/2531] shows an example). There is a known issue (#1364 [https://github.com/IQSS/dataverse/issues/1364]) that once a link to a dataverse or dataset is created, it cannot be removed (apart from database manipulation and reindexing) which is why a DELETE endpoint for saved searches is neither documented nor functional. The Linked Dataverses feature is powered by Saved Search [https://github.com/IQSS/dataverse/issues/1852] and therefore requires that the “makelinks” endpoint be executed on a periodic basis as well.

List all saved searches.

GET http://$SERVER/api/admin/savedsearches/list





List a saved search by database id.

GET http://$SERVER/api/admin/savedsearches/$id





Execute a saved search by database id and make links to dataverses and datasets that are found. The JSON response indicates which dataverses and datasets were newly linked versus already linked. The debug=true query parameter adds to the JSON response extra information about the saved search being executed (which you could also get by listing the saved search).

PUT http://$SERVER/api/admin/savedsearches/makelinks/$id?debug=true





Execute all saved searches and make links to dataverses and datasets that are found. debug works as described above.

PUT http://$SERVER/api/admin/savedsearches/makelinks/all?debug=true








Dataset Integrity

Recalculate the UNF value of a dataset version, if it’s missing, by supplying the dataset version database id:

POST http://$SERVER/api/admin/datasets/integrity/{datasetVersionId}/fixmissingunf








Workflows

List all available workflows in the system:

GET http://$SERVER/api/admin/workflows





Get details of a workflow with a given id:

GET http://$SERVER/api/admin/workflows/$id





Add a new workflow. Request body specifies the workflow properties and steps in JSON format.
Sample json files are available at scripts/api/data/workflows/:

POST http://$SERVER/api/admin/workflows





Delete a workflow with a specific id:

DELETE http://$SERVER/api/admin/workflows/$id






Warning

If the workflow designated by $id is a default workflow, a 403 FORBIDDEN response will be returned, and the deletion will be canceled.



List the default workflow for each trigger type:

GET http://$SERVER/api/admin/workflows/default/





Set the default workflow for a given trigger. This workflow is run when a dataset is published. The body of the PUT request is the id of the workflow. Trigger types are PrePublishDataset, PostPublishDataset:

PUT http://$SERVER/api/admin/workflows/default/$triggerType





Get the default workflow for triggerType. Returns a JSON representation of the workflow, if present, or 404 NOT FOUND.

GET http://$SERVER/api/admin/workflows/default/$triggerType





Unset the default workflow for triggerType. After this call, dataset releases are done with no workflow.

DELETE http://$SERVER/api/admin/workflows/default/$triggerType





Set the whitelist of IP addresses separated by a semicolon (;) allowed to resume workflows. Request body is a list of IP addresses allowed to send “resume workflow” messages to this Dataverse instance:

PUT http://$SERVER/api/admin/workflows/ip-whitelist





Get the whitelist of IP addresses allowed to resume workflows:

GET http://$SERVER/api/admin/workflows/ip-whitelist





Restore the whitelist of IP addresses allowed to resume workflows to default (localhost only):

DELETE http://$SERVER/api/admin/workflows/ip-whitelist








Metrics

Clear all cached metric results:

DELETE http://$SERVER/api/admin/clearMetricsCache





Clear a specific metric cache. Currently this must match the name of the row in the table, which is named metricName*_*metricYYYYMM (or just metricName if there is no date range for the metric). For example dataversesToMonth_2018-05:

DELETE http://$SERVER/api/admin/clearMetricsCache/$metricDbName








Inherit Dataverse Role Assignments

Recursively applies the role assignments of the specified dataverse, for the roles specified by the :InheritParentRoleAssignments setting, to all dataverses contained within it:

GET http://$SERVER/api/admin/dataverse/{dataverse alias}/addRoleAssignmentsToChildren





Note: setting :InheritParentRoleAssignments will automatically trigger inheritance of the parent dataverse’s role assignments for a newly created dataverse. Hence this API call is intended as a way to update existing child dataverses or to update children after a change in role assignments has been made on a parent dataverse.









          

      

      

    





  

    
      
          
            
  
Metrics API


Contents:


	Total


	To-Month


	Past Days


	Dataverse Specific Commands


	By Subject


	By Category






	Dataset Specific Commands


	By Subject











Note


  CORS
 The Metrics API can be used from scripts running in web browsers, as it allows cross-origin resource sharing (CORS).




Note

For all metrics besides Past Days Count (/pastDays/$days), Database setting MetricsCacheTimeoutMinutes defines how long the cached value will be returned by subsequent queries.




Total

Returns a count of various objects in dataverse over all-time:

GET https://$SERVER/api/info/metrics/$type





$type can be set to dataverses, datasets, files or downloads.

Example: curl https://demo.dataverse.org/api/info/metrics/downloads




To-Month

Returns a count of various objects in dataverse up to a specified month $YYYY-DD in YYYY-MM format (i.e. 2018-01):

GET https://$SERVER/api/info/metrics/$type/toMonth/$YYYY-DD





$type can be set to dataverses, datasets, files or downloads.

Example: curl https://demo.dataverse.org/api/info/metrics/dataverses/toMonth/2018-01




Past Days

Returns a count of various objects in dataverse for the past $days (i.e. 30):

GET https://$SERVER/api/info/metrics/$type/pastDays/$days





$type can be set to dataverses, datasets, files or downloads.

Example: curl https://demo.dataverse.org/api/info/metrics/datasets/pastDays/30




Dataverse Specific Commands


By Subject

Returns the number of dataverses by each subject:

GET https://$SERVER/api/info/metrics/dataverses/bySubject








By Category

Returns the number of dataverses by each category:

GET https://$SERVER/api/info/metrics/dataverses/byCategory










Dataset Specific Commands


By Subject

Returns the number of datasets by each subject:

GET https://$SERVER/api/info/metrics/datasets/bySubject













          

      

      

    





  

    
      
          
            
  
Client Libraries

Currently there are client libraries for Python, R, and Java that can be used to develop against Dataverse APIs. We use the term “client library” on this page but “Dataverse SDK” (software development kit) is another way of describing these resources. They are designed to help developers express Dataverse concepts more easily in the languages listed below. For support on any of these client libraries, please consult each project’s README.

Because Dataverse is a SWORD server, additional client libraries exist for Java, Ruby, and PHP per the SWORD API page.


Contents:


	Python


	R


	Java







Python

https://github.com/IQSS/dataverse-client-python is the offical Python package for Dataverse APIs.

Robert Liebowitz [https://github.com/rliebz] created this library while at the Center for Open Science (COS) [https://centerforopenscience.org] and the COS uses it to integrate the Open Science Framework (OSF) [https://osf.io] with Dataverse via an add-on which itself is open source and listed on the Apps page.




R

https://github.com/IQSS/dataverse-client-r is the official R package for Dataverse APIs. The latest release can be installed from CRAN [https://cran.r-project.org/package=dataverse].

It was created by Thomas Leeper [http://thomasleeper.com] whose dataverse can be found at https://dataverse.harvard.edu/dataverse/leeper




Java

https://github.com/IQSS/dataverse-client-java is the official Java library for Dataverse APIs.

Richard Adams [http://www.researchspace.com/electronic-lab-notebook/about_us_team.html] from ResearchSpace [http://www.researchspace.com] created and maintains this library.







          

      

      

    





  

    
      
          
            
  
Apps

The introduction of Dataverse APIs has fostered the development of apps that are listed at http://dataverse.org/integrations and the Integrations section of the Admin Guide.

The apps below are open source, demonstrating how to use Dataverse APIs. Some of these apps (and others) are built on Client Libraries that are available for Dataverse APIs.


Contents:


	Javascript


	TwoRavens






	PHP


	OJS






	Python


	OSF


	GeoConnect


	metrics.dataverse.org






	Java


	DVUploader


	Dataverse for Android











Javascript


TwoRavens

TwoRavens is a system of interlocking statistical tools for data exploration, analysis, and meta-analysis.

https://github.com/IQSS/TwoRavens






PHP


OJS

The Open Journal Systems (OJS) Dataverse Plugin adds data sharing and preservation to the OJS publication process.

https://github.com/pkp/ojs/tree/ojs-stable-2_4_8/plugins/generic/dataverse






Python


OSF

Allows you to view, download, and upload files to and from a Dataverse dataset from an Open Science Framework (OSF) project: https://github.com/CenterForOpenScience/osf.io/tree/develop/addons/dataverse




GeoConnect

GeoConnect allows Dataverse files to be visualized on http://worldmap.harvard.edu with the “Explore” button. Read more about it in the WorldMap: Geospatial Data Exploration section of the User Guide.

https://github.com/IQSS/geoconnect




metrics.dataverse.org

metrics.dataverse.org [http://metrics.dataverse.org] aggregates metrics across multiple Dataverse installations: https://github.com/IQSS/metrics.dataverse.org






Java


DVUploader

The open-source DVUploader tool is a stand-alone command-line Java application that uses the Dataverse API to upload files to a specified Dataset. Files can be specified by name, or the DVUploader can upload all files in a directory or recursively from a directory tree. The DVUploader can also verify that uploaded files match their local sources by comparing the local and remote fixity checksums. Source code, release 1.0.0- jar file, and documentation are available on GitHub. DVUploader’s creation was supported by the Texas Digital Library.

https://github.com/IQSS/dataverse-uploader




Dataverse for Android

For now this is only a proof of concept.

https://github.com/IQSS/dataverse-android









          

      

      

    





  

    
      
          
            
  
Installation Guide

Contents:



	Introduction
	Quick Links

	Intended Audience

	Related Guides

	Getting Help

	Improving this Guide





	Preparation
	Choose Your Own Installation Adventure
	NDS Labs Workbench (for Testing Only)

	Vagrant (for Testing Only)

	Pilot Installation

	Advanced Installation





	Architecture and Components
	Required Components

	Optional Components





	System Requirements
	Hardware Requirements

	Software Requirements





	Decisions to Make

	Next Steps





	Prerequisites
	Linux

	Java
	Installing Java





	Glassfish
	Installing Glassfish

	Launching Glassfish on system boot





	PostgreSQL
	Installing PostgreSQL

	Configuring Database Access for the Dataverse Application (and the Dataverse Installer)





	Solr
	Installing Solr

	Solr Init Script

	Securing Solr





	jq
	Installing jq





	ImageMagick
	Installing and configuring ImageMagick





	R
	Installing R

	Installing the required R libraries

	Rserve









	Installation
	Running the Dataverse Installer

	Logging In
	Superuser Account





	Troubleshooting
	Dataset Cannot Be Published

	Problems Sending Email

	Mail Host Configuration & Authentication

	UnknownHostException While Deploying





	Fresh Reinstall
	Drop database

	Clear Solr

	Deleting Uploaded Files

	Rerun Installer









	Configuration
	Securing Your Installation
	Changing the Superuser Password

	Blocking API Endpoints

	Forcing HTTPS

	Privacy Considerations

	Additional Recommendations

	Run Glassfish as a User Other Than Root

	Enforce Strong Passwords for User Accounts





	Network Ports

	Root Dataverse Permissions

	Persistent Identifiers and Publishing Datasets
	Configuring Dataverse for DOIs

	Configuring Dataverse for Handles





	Auth Modes: Local vs. Remote vs. Both

	File Storage: Local Filesystem vs. Swift vs. S3
	Swift Storage

	Setting up Compute

	Amazon S3 Storage (or Compatible)
	First: Set Up Accounts and Access Credentials
	Preparation When Using Amazon’s S3 Service

	Preparation When Using Custom S3-Compatible Service

	Reported Working S3-Compatible Storage

	Manually Set Up Credentials File

	Console Commands to Set Up Access Configuration





	Second: Configure Dataverse to use S3 Storage
	S3 Storage Options













	Branding Your Installation
	Custom Homepage

	Custom Navbar Logo

	Custom Header

	Custom Footer

	Custom Stylesheet





	Going Live: Launching Your Production Deployment
	Letting Search Engines Crawl Your Installation
	Ensure robots.txt Is Not Blocking Search Engines

	Creating a Sitemap and Submitting it to Search Engines





	Putting Your Dataverse Installation on the Map at dataverse.org

	Administration of Your Dataverse Installation

	Setting Up Integrations





	JVM Options
	dataverse.fqdn

	dataverse.siteUrl

	dataverse.files.directory

	dataverse.auth.password-reset-timeout-in-minutes

	dataverse.rserve.host

	dataverse.rserve.port

	dataverse.rserve.user

	dataverse.rserve.tempdir

	dataverse.rserve.password

	dataverse.dropbox.key

	dataverse.path.imagemagick.convert

	dataverse.dataAccess.thumbnail.image.limit

	dataverse.dataAccess.thumbnail.pdf.limit

	doi.baseurlstring

	doi.username

	doi.password

	dataverse.handlenet.admcredfile

	dataverse.handlenet.admprivphrase

	dataverse.handlenet.index

	dataverse.timerServer

	dataverse.lang.directory

	dataverse.files.hide-schema-dot-org-download-urls





	Database Settings
	:BlockedApiPolicy

	:BlockedApiEndpoints

	:BlockedApiKey

	BuiltinUsers.KEY

	:SearchApiRequiresToken

	:SystemEmail

	:HomePageCustomizationFile

	:LogoCustomizationFile

	:HeaderCustomizationFile

	:DisableRootDataverseTheme

	:FooterCustomizationFile

	:StyleCustomizationFile

	:FooterCopyright

	:DoiProvider

	:Protocol

	:Authority

	:Shoulder

	:IdentifierGenerationStyle

	:DataFilePIDFormat

	:FilePIDsEnabled

	:ApplicationTermsOfUse

	:ApplicationPrivacyPolicyUrl

	:ApiTermsOfUse

	:ExcludeEmailFromExport

	:NavbarAboutUrl

	:GuidesBaseUrl

	:GuidesVersion

	:NavbarSupportUrl

	:MetricsUrl

	:StatusMessageHeader

	:StatusMessageText

	:MaxFileUploadSizeInBytes

	:ZipDownloadLimit

	:TabularIngestSizeLimit

	:ZipUploadFilesLimit

	:GoogleAnalyticsCode

	:SolrHostColonPort

	:SolrFullTextIndexing

	:SolrMaxFileSizeForFullTextIndexing

	:SignUpUrl

	:TwoRavensUrl

	:TwoRavensTabularView

	:GeoconnectCreateEditMaps

	:GeoconnectViewMaps

	:DatasetPublishPopupCustomText

	:DatasetPublishPopupCustomTextOnAllVersions

	:SearchHighlightFragmentSize

	:ScrubMigrationData

	:MinutesUntilConfirmEmailTokenExpires

	:DefaultAuthProvider

	:AllowSignUp

	:PiwikAnalyticsId

	:PiwikAnalyticsHost

	:PiwikAnalyticsTrackerFileName

	:FileFixityChecksumAlgorithm

	:PVMinLength

	:PVMaxLength

	:PVNumberOfConsecutiveDigitsAllowed

	:PVCharacterRules

	:PVNumberOfCharacteristics

	:PVDictionaries

	:PVGoodStrength

	:PVCustomPasswordResetAlertMessage

	:ShibPassiveLoginEnabled

	:ComputeBaseUrl

	:CloudEnvironmentName

	:PublicInstall

	:DataCaptureModuleUrl

	:RepositoryStorageAbstractionLayerUrl

	:UploadMethods

	:DownloadMethods

	:GuestbookResponsesPageDisplayLimit

	:CustomDatasetSummaryFields

	:AllowApiTokenLookupViaApi

	:ProvCollectionEnabled

	:MetricsCacheTimeoutMinutes

	:Languages

	:InheritParentRoleAssignments









	Upgrading

	TwoRavens
	0. Overview

	1. Prerequisites
	a. httpd (Apache):

	b. R:

	c. rApache:

	d. Install the build environment for R:





	2. Install Extra R Packages

	3. Install the TwoRavens Application
	a. download and unzip the application

	b. Rename the resulting directory “dataexplore” …

	c. run the installer

	d. Version conflict check  (preprocess.R)

	e. Enable TwoRavens Button in Dataverse

	f. Perform a quick test of TwoRavens functionality





	4. Appendix
	I. Ports configuration discussion

	II. What the r-setup.sh script does:

	III. What the install.pl script does:









	Geoconnect

	Shibboleth
	Introduction

	Installation
	System Requirements

	Install Apache

	Install Shibboleth
	Enable Shibboleth Yum Repo

	Install Shibboleth Via Yum









	Configure Glassfish
	Apply GRIZZLY-1787 Patch

	Glassfish HTTP and HTTPS ports

	AJP

	SSLEngine Warning Workaround





	Configure Apache
	Enforce HTTPS

	Edit Apache ssl.conf File





	Configure Shibboleth
	shibboleth2.xml
	Specific Identity Provider(s)

	Identity Federation





	Shibboleth Attributes

	attribute-map.xml





	Disable or Reconfigure SELinux
	Disable SELinux

	Reconfigure SELinux to Accommodate Shibboleth
	Put Type Enforcement (TE) File in misc directory

	Navigate to misc directory

	Run checkmodule

	Run semodule_package

	Run semodule









	Restart Apache and Shibboleth

	Configure Apache and shibd to Start at Boot

	Verify DiscoFeed and Metadata URLs

	Add the Shibboleth Authentication Provider to Dataverse

	Exchange Metadata with Your Identity Provider

	Backup sp-cert.pem and sp-key.pem Files

	Debugging

	Converting Accounts
	Converting Local Users to Shibboleth

	Converting Shibboleth Users to Local





	Institution-Wide Shibboleth Groups





	OAuth Login: ORCID, GitHub, Google
	Introduction

	Setup
	Identity Provider Side
	Obtain Client ID and Client Secret





	Dataverse Side
	ORCID Sandbox









	Converting Local Users to OAuth

	Converting OAuth Users to Local





	External Tools
	Inventory of External Tools

	Downloading and Adjusting an External Tool Manifest File

	Making an External Tool Available in Dataverse

	Listing all External Tools in Dataverse

	Removing an External Tool Available in Dataverse

	Writing Your Own External Tool





	Advanced Installation
	Multiple Glassfish Servers
	Detecting Which Glassfish Server a User Is On

















          

      

      

    





  

    
      
          
            
  
Introduction

Welcome! Thanks for installing Dataverse [http://dataverse.org]!


Contents:


	Quick Links


	Intended Audience


	Related Guides


	Getting Help


	Improving this Guide







Quick Links

If you are installing Dataverse for the first time, please proceed to the Preparation section.

Jump ahead to Configuration or Upgrading for an existing Dataverse installation.




Intended Audience

This guide is intended primarily for sysadmins who are installing, configuring, and upgrading Dataverse.

Sysadmins are expected to be comfortable using standard Linux commands, issuing curl commands, and running SQL scripts.




Related Guides

Many “admin” functions can be performed by Dataverse users themselves (non-superusers) as documented in the User Guide and that guide is a good introduction to the features of Dataverse from an end user perspective.

If you are a sysadmin who likes to code, you may find the API Guide useful, and you may want to consider improving the installation script or hacking on the community-lead configuration management options mentioned in the Preparation section. If you really like to code and want to help with the Dataverse code, please check out the Developer Guide!




Getting Help

To get help installing or configuring Dataverse, please try one or more of:


	posting to the dataverse-community [https://groups.google.com/forum/#!forum/dataverse-community] Google Group.


	asking at http://chat.dataverse.org (#dataverse on the freenode IRC network)


	emailing support@dataverse.org to open a private ticket at https://help.hmdc.harvard.edu







Improving this Guide

If you spot a typo in this guide or would like to suggest an improvement, please find the appropriate file in https://github.com/IQSS/dataverse/tree/develop/doc/sphinx-guides/source/installation and send a pull request as explained in the Documentation section of the Developer Guide. You are also welcome to simply open an issue at https://github.com/IQSS/dataverse/issues to describe the problem with this guide.

Next is the Preparation section.







          

      

      

    





  

    
      
          
            
  
Preparation

> "What are you preparing? You're always preparing! Just go!" -- Spaceballs





We’ll try to get you up and running as quickly as possible, but we thought you might like to hear about your options. :)


Contents:


	Choose Your Own Installation Adventure


	NDS Labs Workbench (for Testing Only)


	Vagrant (for Testing Only)


	Pilot Installation


	Advanced Installation






	Architecture and Components


	Required Components


	Optional Components






	System Requirements


	Hardware Requirements


	Software Requirements






	Decisions to Make


	Next Steps







Choose Your Own Installation Adventure


NDS Labs Workbench (for Testing Only)

The National Data Service (NDS) is community-driven effort guided by the National Data Service Consortium. NDS Labs has packaged Dataverse as one of many data management tools [https://github.com/nds-org/ndslabs-specs] that can be quickly deployed for evaluation purposes in their tool based on Kubernetes called NDS Labs Workbench. To get started, visit http://www.nationaldataservice.org/projects/labs.html .

Please note that the version of Dataverse in NDS Labs Workbench may lag behind the latest release. Craig Willis from NDS Labs did an excellent job of adding Dataverse 4 to NDS Labs Workbench and the Dataverse team hopes to some day take over the creation of Docker images so the latest version of Dataverse can be evaluated in the workbench.




Vagrant (for Testing Only)

If you are looking to simply kick the tires on installing Dataverse and are familiar with Vagrant, you are welcome to read through the “Vagrant” section of the Tools section of the Developer Guide. Checking out a tagged release is recommended rather than running vagrant up on unreleased code.




Pilot Installation

Vagrant is not a bad way for a sysadmin to get a quick sense of how an application like Dataverse is put together in a sandbox (a virtual machine running on a laptop for example), but to allow end users to start playing with Dataverse, you’ll need to install Dataverse on a server.

Installing Dataverse involves some system configuration followed by executing an installation script that will guide you through the installation process as described in Installation, but reading about the Architecture and Components of Dataverse is recommended first.




Advanced Installation

There are some community-lead projects to use configuration management tools such as Ansible and Puppet to automate Dataverse installation and configuration, but support for these solutions is limited to what the Dataverse community can offer as described in each project’s webpage:


	https://github.com/IQSS/dataverse-ansible


	https://github.com/IQSS/dataverse-puppet




(Please note that the “dataverse-ansible” repo is used in a script that allows Dataverse to be installed on Amazon Web Services (AWS) from arbitrary GitHub branches as described in the Deployment section of the Developer Guide.)

The Dataverse development team is happy to “bless” additional community efforts along these lines (i.e. Docker, Chef, Salt, etc.) by creating a repo under https://github.com/IQSS and managing team access.

Dataverse permits a fair amount of flexibility in where you choose to install the various components. The diagram below shows a load balancer, multiple proxies and web servers, redundant database servers, and offloading of potentially resource intensive work to a separate server.

[image: 3webservers]

A setup such as this is advanced enough to be considered out of scope for this guide (apart from a stub in the Advanced Installation section) but you are welcome to ask questions about similar configurations via the support channels listed in the Introduction.






Architecture and Components

Dataverse is a Java Enterprise Edition (EE) web application that is shipped as a war (web archive) file.


Required Components

When planning your installation you should be aware of the following components of the Dataverse architecture:


	Linux: RHEL/CentOS is highly recommended since all development and QA happens on this distribution.


	Glassfish: a Java EE application server to which the Dataverse application (war file) is to be deployed.


	PostgreSQL: a relational database.


	Solr: a search engine. A Dataverse-specific schema is provided.


	SMTP server: for sending mail for password resets and other notifications.


	Persistent identifier service: DOI and Handle support are provided. Production use requires a registered DOI or Handle.net authority.







Optional Components

There are a number of optional components you may choose to install or configure, including:


	R, rApache, Zelig, and TwoRavens: TwoRavens: Tabular Data Exploration describes the feature and TwoRavens describes how to install these components. External Tools explains how third-party tools like TwoRavens can be added to Dataverse.


	Dropbox integration dataverse.dropbox.key: for uploading files from the Dropbox API.


	Apache: a web server that can “reverse proxy” Glassfish applications and rewrite HTTP traffic.


	Shibboleth: an authentication system described in Shibboleth. Its use with Dataverse requires Apache.


	OAuth2: an authentication system described in OAuth Login: ORCID, GitHub, Google.


	Geoconnect: a system that allows users to create maps from geospatial files, described in Geoconnect.




See also the Integrations section of the Admin Guide.






System Requirements


Hardware Requirements

A basic installation of Dataverse runs fine on modest hardware. For example, as of this writing the test installation at http://phoenix.dataverse.org is backed by a single virtual machine with two 2.8 GHz processors, 8 GB of RAM and 50 GB of disk.

In contrast, before we moved it to the Amazon Cloud, the production installation at https://dataverse.harvard.edu was backed by six servers with two Intel Xeon 2.53 Ghz CPUs and either 48 or 64 GB of RAM. The three servers with 48 GB of RAM run were web frontends running Glassfish and Apache and were load balanced by a hardware device. The remaining three servers with 64 GB of RAM were the primary and backup database servers and a server dedicated to running Rserve. Multiple TB of storage were mounted from a SAN via NFS.

Currently, Harvard Dataverse is served by four AWS server nodes: two “m4.4xlarge” instances (64GB/16 vCPU) as web frontends, one 32GB/8 vCPU (“m4.2xlarge”) instance for the Solr search engine, and one 16GB/4 vCPU (“m4.xlarge”) instance for R and TwoRavens. The PostgreSQL database is served by Amazon RDS, and physical files are stored on Amazon S3.

The Dataverse installation script will attempt to give Glassfish the right amount of RAM based on your system.

Experimentation and testing with various hardware configurations is encouraged, or course, but do reach out as explained in the Introduction as needed for assistance.




Software Requirements

See Architecture and Components for an overview of required and optional components. The Prerequisites section is oriented toward installing the software necessary to successfully run the Dataverse installation script. Pages on optional components contain more detail of software requirements for each component.

Clients are expected to be running a relatively modern browser.






Decisions to Make

Here are some questions to keep in the back of your mind as you test and move into production:


	How much storage do I need?


	Which features do I want based on Architecture and Components?


	How do I want my users to log in to Dataverse? With local accounts? With Shibboleth/SAML? With OAuth providers such as ORCID, GitHub, or Google?


	Do I want to to run Glassfish on the standard web ports (80 and 443) or do I want to “front” Glassfish with a proxy such as Apache or nginx? See “Network Ports” in the Configuration section.


	How many points of failure am I willing to tolerate? How much complexity do I want?


	How much does it cost to subscribe to a service to create persistent identifiers such as DOIs or handles?







Next Steps

Proceed to the Prerequisites section which will help you get ready to run the Dataverse installation script.







          

      

      

    





  

    
      
          
            
  
Prerequisites

Before running the Dataverse installation script, you must install and configure the following software.

After following all the steps below, you can proceed to the Installation section.

You may find it helpful to look at how the configuration is done automatically by various tools such as Vagrant, Puppet, or Ansible. See the Preparation section for pointers on diving into these scripts.


Contents:


	Linux


	Java


	Installing Java






	Glassfish


	Installing Glassfish


	Launching Glassfish on system boot






	PostgreSQL


	Installing PostgreSQL


	Configuring Database Access for the Dataverse Application (and the Dataverse Installer)






	Solr


	Installing Solr


	Solr Init Script


	Securing Solr






	jq


	Installing jq






	ImageMagick


	Installing and configuring ImageMagick






	R


	Installing R


	Installing the required R libraries


	Rserve











Linux

We assume you plan to run Dataverse on Linux and we recommend RHEL/CentOS, which is the Linux distribution tested by the Dataverse development team. Please be aware that while el7 (RHEL/CentOS 7) is the recommended platform, the steps below were orginally written for el6 and may need to be updated (please feel free to make a pull request!).




Java

Dataverse requires Java SE 8 (8u74/JDK 1.8.0u74 or higher).


Installing Java

Dataverse should run fine with only the Java Runtime Environment (JRE) installed, but installing the Java Development Kit (JDK) is recommended so that useful tools for troubleshooting production environments are available. We recommend using Oracle JDK or OpenJDK.

The Oracle JDK can be downloaded from http://www.oracle.com/technetwork/java/javase/downloads/index.html

On a RHEL/CentOS, install OpenJDK (devel version) using yum:

# yum install java-1.8.0-openjdk-devel





If you have multiple versions of Java installed, Java 8 should be the default when java is invoked from the command line. You can test this by running java -version.

On RHEL/CentOS you can make Java 8 the default with the alternatives command, having it prompt you to select the version of Java from a list:

# alternatives --config java





If you don’t want to be prompted, here is an example of the non-interactive invocation:

# alternatives --set java /usr/lib/jvm/jre-1.8.0-openjdk.x86_64/bin/java










Glassfish

Glassfish Version 4.1 is required. There are known issues with newer versions of the Glassfish 4.x series so it should be avoided. For details, see https://github.com/IQSS/dataverse/issues/2628 . The issue we are using the track support for Glassfish 5 is https://github.com/IQSS/dataverse/issues/4248 .


Installing Glassfish

Note: The Dataverse installer need not be run as root, and it is recommended that Glassfish not run as root either. We suggest the creation of a glassfish service account for this purpose.


	Download and install Glassfish (installed in /usr/local/glassfish4 in the example commands below):

# wget http://dlc-cdn.sun.com/glassfish/4.1/release/glassfish-4.1.zip
# unzip glassfish-4.1.zip
# mv glassfish4 /usr/local









If you intend to install and run Glassfish under a service account (and we hope you do), chown -R the Glassfish hierarchy to root to protect it but give the service account access to the below directories:


	Set service account permissions:

# chown -R root:root /usr/local/glassfish4
# chown glassfish /usr/local/glassfish4/glassfish/lib
# chown -R glassfish:glassfish /usr/local/glassfish4/glassfish/domains/domain1









After installation, you may chown the lib/ directory back to root; the installer only needs write access to copy the JDBC driver into that directory.

Once Glassfish is installed, you’ll need a newer version of the Weld library (v2.2.10.SP1) to fix a serious issue in the library supplied with Glassfish 4.1 (see https://github.com/IQSS/dataverse/issues/647 for details). If you plan to front Glassfish with Apache you must also patch Grizzly as explained in the Shibboleth section.


	Remove the stock Weld jar; download Weld v2.2.10.SP1 and install it in the modules folder:

# cd /usr/local/glassfish4/glassfish/modules
# rm weld-osgi-bundle.jar
# wget http://central.maven.org/maven2/org/jboss/weld/weld-osgi-bundle/2.2.10.SP1/weld-osgi-bundle-2.2.10.SP1-glassfish4.jar







	Change from -client to -server under <jvm-options>-client</jvm-options>:

# vim /usr/local/glassfish4/glassfish/domains/domain1/config/domain.xml









This recommendation comes from http://www.c2b2.co.uk/middleware-blog/glassfish-4-performance-tuning-monitoring-and-troubleshooting.php among other places.


	Start Glassfish and verify the Weld version:

# /usr/local/glassfish4/bin/asadmin start-domain
# /usr/local/glassfish4/bin/asadmin osgi lb | grep 'Weld OSGi Bundle'









The Certificate Authority (CA) certificate bundle file from Glassfish contains certs that expired in August 2018, causing problems with ORCID login.


	The actual expiration date is August 22, 2018, which you can see with the following command:

# keytool -list -v -keystore /usr/local/glassfish4/glassfish/domains/domain1/config/cacerts.jks







	Overwrite Glassfish’s CA certs file with the file that ships with the operating system and restart Glassfish:

# cp /etc/pki/ca-trust/extracted/java/cacerts /usr/local/glassfish4/glassfish/domains/domain1/config/cacerts.jks
# /usr/local/glassfish4/bin/asadmin stop-domain
# /usr/local/glassfish4/bin/asadmin start-domain












Launching Glassfish on system boot

The Dataverse installation script will start Glassfish if necessary, but you may find the following scripts helpful to launch Glassfish start automatically on boot.


	This Systemd file may be serve as a reference for systems using Systemd (such as RHEL/CentOS 7 or Ubuntu 16+)


	This init script may be useful for RHEL/CentOS 6 or Ubuntu >= 14 if you’re using a Glassfish service account, or


	This Glassfish init script may be helpful if you’re just going to run Glassfish as root.




It is not necessary for Glassfish to be running before you execute the Dataverse installation script; it will start Glassfish for you.

Please note that you must run Glassfish in an English locale. If you are using something like LANG=de_DE.UTF-8, ingest of tabular data will fail with the message “RoundRoutines:decimal separator no in right place”.

Also note that Glassfish may utilize more than the default number of file descriptors, especially when running batch jobs such as harvesting. We have increased ours by adding ulimit -n 32768 to our glassfish init script. On operating systems which use systemd such as RHEL or CentOS 7, file descriptor limits may be increased by adding a line like LimitNOFILE=32768 to the systemd unit file. You may adjust the file descriptor limits on running processes by using the prlimit utility:

# sudo prlimit --pid pid --nofile=32768:32768










PostgreSQL


Installing PostgreSQL

Version 9.x is required. Previous versions have not been tested.

Version 9.6 is anticipated as an “LTS” release in RHEL and on other platforms:

# yum install -y https://download.postgresql.org/pub/repos/yum/9.6/redhat/rhel-7-x86_64/pgdg-centos96-9.6-3.noarch.rpm
# yum makecache fast
# yum install -y postgresql96-server
# /usr/pgsql-9.6/bin/postgresql96-setup initdb
# /usr/bin/systemctl start postgresql-9.6
# /usr/bin/systemctl enable postgresql-9.6





Note these steps are specific to RHEL/CentOS 7. For RHEL/CentOS 6 use:

# service postgresql-9.6 initdb
# service postgresql-9.6 start








Configuring Database Access for the Dataverse Application (and the Dataverse Installer)


	The application and the installer script will be connecting to PostgreSQL over TCP/IP, using password authentication. In this section we explain how to configure PostgreSQL to accept these connections.


	If PostgreSQL is running on the same server as Glassfish, find the localhost (127.0.0.1) entry that’s already in the pg_hba.conf and modify it to look like this:

host all all 127.0.0.1/32 md5





Once you are done with the prerequisites and run the installer script (documented here: Installation) it will ask you to enter the address of the Postgres server. Simply accept the default value 127.0.0.1 there.



	The Dataverse installer script will need to connect to PostgreSQL as the admin user, in order to create and set up the database that the Dataverse will be using. If for whatever reason it is failing to connect (for example, if you don’t know/remember what your Postgres admin password is), you may choose to temporarily disable all the access restrictions on localhost connections, by changing the above line to:

host all all 127.0.0.1/32 trust





Note that this rule opens access to the database server via localhost only. Still, in a production environment, this may constitute a security risk. So you will likely want to change it back to “md5” once the installer has finished.



	If the Dataverse application is running on a different server, you will need to add a new entry to the pg_hba.conf granting it access by its network address:

host all all [ADDRESS]      255.255.255.255 md5





Where [ADDRESS] is the numeric IP address of the Glassfish server. Enter this address when the installer asks for the PostgreSQL server address.



	In some distributions, PostgreSQL is pre-configured so that it doesn’t accept network connections at all. Check that the listen_address line in the configuration file postgresql.conf is not commented out and looks like this:

listen_addresses='*'





The file postgresql.conf will be located in the same directory as the pg_hba.conf above.



	Important: PostgreSQL must be restarted for the configuration changes to take effect! On RHEL/CentOS 7 and similar (provided you installed Postgres as instructed above):

# systemctl restart postgresql-9.6





or on RHEL/CentOS 6:

# service postgresql restart





On MacOS X a “Reload Configuration” icon is usually supplied in the PostgreSQL application folder. Or you could look up the process id of the PostgreSQL postmaster process, and send it the SIGHUP signal:

kill -1 PROCESS_ID














Solr

The Dataverse search index is powered by Solr.


Installing Solr

You should not run Solr as root. Create a user called solr and a directory to install Solr into:

useradd solr
mkdir /usr/local/solr
chown solr:solr /usr/local/solr





Become the solr user and then download and configure Solr:

su - solr
cd /usr/local/solr
wget https://archive.apache.org/dist/lucene/solr/7.3.0/solr-7.3.0.tgz
tar xvzf solr-7.3.0.tgz
cd solr-7.3.0
cp -r server/solr/configsets/_default server/solr/collection1





You should already have a “dvinstall.zip” file that you downloaded from https://github.com/IQSS/dataverse/releases . Unzip it into /tmp. Then copy the files into place:

cp /tmp/dvinstall/schema.xml /usr/local/solr/solr-7.3.0/server/solr/collection1/conf
cp /tmp/dvinstall/solrconfig.xml /usr/local/solr/solr-7.3.0/server/solr/collection1/conf





Note: Dataverse has customized Solr to boost results that come from certain indexed elements inside Dataverse, for example prioritizing results from Dataverses over Datasets. If you would like to remove this, edit your solrconfig.xml and remove the <str name="qf"> element and its contents. If you have ideas about how this boosting could be improved, feel free to contact us through our Google Group https://groups.google.com/forum/#!forum/dataverse-dev .

Dataverse requires a change to the jetty.xml file that ships with Solr. Edit /usr/local/solr/solr-7.3.0/server/etc/jetty.xml , increasing requestHeaderSize from 8192 to 102400

Solr will warn about needing to increase the number of file descriptors and max processes in a production environment but will still run with defaults. We have increased these values to the recommended levels by adding ulimit -n 65000 to the init script, and the following to /etc/security/limits.conf:

solr soft nproc 65000
solr hard nproc 65000
solr soft nofile 65000
solr hard nofile 65000





On operating systems which use systemd such as RHEL or CentOS 7, you may then add a line like LimitNOFILE=65000 to the systemd unit file, or adjust the limits on a running process using the prlimit tool:

# sudo prlimit --pid pid --nofile=65000:65000





Solr launches asynchronously and attempts to use the lsof binary to watch for its own availability. Installation of this package isn’t required but will prevent a warning in the log at startup.

Finally, you may start Solr and create the core that will be used to manage search information:

cd /usr/local/solr/solr-7.3.0
bin/solr start
bin/solr create_core -c collection1 -d server/solr/collection1/conf/








Solr Init Script

For systems running systemd, as root, download solr.service and place it in /tmp. Then start Solr and configure it to start at boot with the following commands:

cp /tmp/solr.service /usr/lib/systemd/system
systemctl start solr.service
systemctl enable solr.service





For systems using init.d, download this Solr init script and place it in /tmp. Then start Solr and configure it to start at boot with the following commands:

cp /tmp/solr /etc/init.d
service solr start
chkconfig solr on








Securing Solr

Solr must be firewalled off from all hosts except the server(s) running Dataverse. Otherwise, any host  that can reach the Solr port (8983 by default) can add or delete data, search unpublished data, and even reconfigure Solr. For more information, please see https://lucene.apache.org/solr/guide/7_2/securing-solr.html






jq


Installing jq

jq is a command line tool for parsing JSON output that is used by the Dataverse installation script. https://stedolan.github.io/jq explains various ways of installing it, but a relatively straightforward method is described below. Please note that you must download the 64- or 32-bit version based on your architecture. In the example below, the 64-bit version is installed. We confirm it’s executable and in our $PATH by checking the version (1.4 or higher should be fine):

# cd /usr/bin
# wget http://stedolan.github.io/jq/download/linux64/jq
# chmod +x jq
# jq --version










ImageMagick

Dataverse uses ImageMagick [https://www.imagemagick.org] to generate thumbnail previews of PDF files. This is an optional component, meaning that if you don’t have ImageMagick installed, there will be no thumbnails for PDF files, in the search results and on the dataset pages; but everything else will be working. (Thumbnail previews for non-PDF image files are generated using standard Java libraries and do not require any special installation steps).


Installing and configuring ImageMagick

On a Red Hat and similar Linux distributions, you can install ImageMagick with something like:

# yum install ImageMagick





(most RedHat systems will have it pre-installed).
When installed using standard yum mechanism, above, the executable for the ImageMagick convert utility will be located at /usr/bin/convert. No further configuration steps will then be required.

On MacOS you can compile ImageMagick from sources, or use one of the popular installation frameworks, such as brew.

If the installed location of the convert executable is different from /usr/bin/convert, you will also need to specify it in your Glassfish configuration using the JVM option, below. For example:

<jvm-options>-Ddataverse.path.imagemagick.convert=/opt/local/bin/convert</jvm-options>





(see the Configuration section for more information on the JVM options)






R

Dataverse uses R [https://https://cran.r-project.org/] to handle
tabular data files. The instructions below describe a minimal R
installation. It will allow you to ingest R (.RData) files as tabular
data; to export tabular data as .RData files; and to run Data
Explorer [https://github.com/scholarsportal/Dataverse-Data-Explorer]
(specifically, R is used to generate .prep metadata files that Data
Explorer uses).  R can be considered an optional component, meaning
that if you don’t have R installed, you will still be able to run and
use Dataverse - but the functionality specific to tabular data
mentioned above will not be available to your users.  Note that if
you choose to also install TwoRavens [https://github.com/IQSS/TwoRavens], it will require some extra R
components and libraries.  Please consult the instructions in the
TowRavens section of the Installation Guide.


Installing R

Can be installed with yum:

yum install R-core R-core-devel





EPEL distribution is strongly recommended. The version of R currently available from epel6 and epel7 is 3.5; it has been tested and is known to work on RedHat and CentOS versions 6 and 7.

If yum isn’t configured to use EPEL repositories ( https://fedoraproject.org/wiki/EPEL ):

RHEL/CentOS users can install the RPM epel-release. For RHEL/CentOS 7:

yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm





RHEL/CentOS users can install the RPM epel-release. For RHEL/CentOS 6:

yum install https://dl.fedoraproject.org/pub/epel/epel-release-latest-6.noarch.rpm





RHEL users will want to log in to their organization’s respective RHN interface, find the particular machine in question and:


	click on “Subscribed Channels: Alter Channel Subscriptions”


	enable EPEL, Server Extras, Server Optional







Installing the required R libraries

The following R packages (libraries) are required:

R2HTML
rjson
DescTools
Rserve
haven





Install them following the normal R package installation procedures. For example, with the following R commands:

install.packages("R2HTML", repos="https://cloud.r-project.org/", lib="/usr/lib64/R/library" )
install.packages("rjson", repos="https://cloud.r-project.org/", lib="/usr/lib64/R/library" )
install.packages("DescTools", repos="https://cloud.r-project.org/", lib="/usr/lib64/R/library" )
install.packages("Rserve", repos="https://cloud.r-project.org/", lib="/usr/lib64/R/library" )
install.packages("haven", repos="https://cloud.r-project.org/", lib="/usr/lib64/R/library" )








Rserve

Dataverse uses Rserve [https://rforge.net/Rserve/] to communicate
to R. Rserve is installed as a library package, as described in the
step above. It runs as a daemon process on the server, accepting
network connections on a dedicated port. This requires some extra
configuration and we provide a  script (scripts/r/rserve/rserve-setup.sh) for setting it up.
Run the script as follows (as root):

cd <DATAVERSE SOURCE TREE>/scripts/r/rserve
./rserve-setup.sh





The setup script will create a system user rserve
that will run the daemon process.  It will install the startup script
for the daemon (/etc/init.d/rserve), so that it
gets started automatically when the system boots.  This is an
init.d-style startup file. If this is a
RedHat/CentOS 7 system, you may want to use the
systemctl-style file
rserve.service instead. (Copy it into the
/usr/lib/systemd/system/ directory)

Note that the setup will also set the Rserve password to
“rserve”.  Rserve daemon runs under a
non-privileged user id, so there’s not much potential for security
damage through unauthorized access. It is however still a good idea
to change the password. The password is specified in
/etc/Rserv.pwd.  You can consult Rserve
documentation [https://rforge.net/Rserve/doc.html] for more
information on password encryption and access security.

You should already have the following 4 JVM options added to your
domain.xml by the Dataverse installer:

<jvm-options>-Ddataverse.rserve.host=localhost</jvm-options>
<jvm-options>-Ddataverse.rserve.port=6311</jvm-options>
<jvm-options>-Ddataverse.rserve.user=rserve</jvm-options>
<jvm-options>-Ddataverse.rserve.password=rserve</jvm-options>





If you have changed the password, make sure it is correctly specified
in the dataverse.rserve.password option above.  If
Rserve is running on a host that’s different from your Dataverse
server, change the dataverse.rserve.host option
above as well (and make sure the port 6311 on the Rserve host is not
firewalled from your Dataverse host).

Now that you have all the prerequisites in place, you can proceed to the Installation section.









          

      

      

    





  

    
      
          
            
  
Installation

Now that the Prerequisites are in place, we are ready to execute the Dataverse installation script (the “installer”) and verify that the installation was successful by logging in with a “superuser” account.


Contents:


	Running the Dataverse Installer


	Logging In


	Superuser Account






	Troubleshooting


	Dataset Cannot Be Published


	Problems Sending Email


	Mail Host Configuration & Authentication


	UnknownHostException While Deploying






	Fresh Reinstall


	Drop database


	Clear Solr


	Deleting Uploaded Files


	Rerun Installer











Running the Dataverse Installer

A scripted, interactive installer is provided. This script will configure your Glassfish environment, create the database, set some required options and start the application. Some configuration tasks will still be required after you run the installer! So make sure to consult the next section.

As mentioned in the Prerequisites section, RHEL/CentOS is the recommended Linux distribution. (The installer is also known to work on Mac OS X for setting up a development environment.)

Generally, the installer has a better chance of succeeding if you run it against a freshly installed Glassfish node that still has all the default configuration settings. In any event, please make sure that it is still configured to accept http connections on port 8080 - because that’s where the installer expects to find the application once it’s deployed.

You should have already downloaded the installer from https://github.com/IQSS/dataverse/releases when setting up and starting Solr under the Prerequisites section. Again, it’s a zip file with “dvinstall” in the name.

Unpack the zip file - this will create the directory dvinstall.

Important: The installer will need to use the PostgreSQL command line utility psql in order to configure the database. If the executable is not in your system PATH, the installer will try to locate it on your system. However, we strongly recommend that you check and make sure it is in the PATH. This is especially important if you have multiple versions of PostgreSQL installed on your system. Make sure the psql that came with the version that you want to use with your Dataverse is the first on your path. For example, if the PostgreSQL distribution you are running is installed in  /Library/PostgreSQL/9.6, add /Library/PostgreSQL/9.6/bin to the beginning of your $PATH variable. If you are running multiple PostgreSQL servers, make sure you know the port number of the one you want to use, as the installer will need it in order to connect to the database (the first PostgreSQL distribution installed on your system is likely using the default port 5432; but the second will likely be on 5433, etc.) Does every word in this paragraph make sense? If it does, great - because you definitely need to be comfortable with basic system tasks in order to install Dataverse. If not - if you don’t know how to check where your PostgreSQL is installed, or what port it is running on, or what a $PATH is… it’s not too late to stop. Because it will most likely not work. And if you contact us for help, these will be the questions we’ll be asking you - so, again, you need to be able to answer them comfortably for it to work.

Execute the installer script like this (but first read the note below about not running the installer as root):

$ cd dvinstall
$ ./install





It is no longer necessary to run the installer as root!

Just make sure the user running the installer has write permission to:


	/usr/local/glassfish4/glassfish/lib


	/usr/local/glassfish4/glassfish/domains/domain1


	the current working directory of the installer (it currently writes its logfile there), and


	your jvm-option specified files.dir




The only reason to run Glassfish as root would be to allow Glassfish itself to listen on the default HTTP(S) ports 80 and 443, or any other port below 1024. However, it is simpler and more secure to run Glassfish run on its default port of 8080 and hide it behind an Apache Proxy, via AJP, running on port 80 or 443. This configuration is required if you’re going to use Shibboleth authentication. See more discussion on this here: Shibboleth.)

The script will prompt you for some configuration values. If this is a test/evaluation installation, it may be possible to accept the default values provided for most of the settings:


	Internet Address of your host: localhost


	Glassfish Directory: /usr/local/glassfish4


	Glassfish User: current user running the installer script


	Administrator email address for this Dataverse: (none)


	SMTP (mail) server to relay notification messages: localhost


	Postgres Server Address: [127.0.0.1]


	Postgres Server Port: 5432


	Postgres ADMIN password: secret


	Name of the Postgres Database: dvndb


	Name of the Postgres User: dvnapp


	Postgres user password: secret


	Remote Solr indexing service: LOCAL


	Rserve Server: localhost


	Rserve Server Port: 6311


	Rserve User Name: rserve


	Rserve User Password: rserve


	Administration Email address for the installation;


	Postgres admin password - We’ll need it in order to create the database and user for the Dataverse to use, without having to run the installer as root. If you don’t know your Postgres admin password, you may simply set the authorization level for localhost to “trust” in the PostgreSQL pg_hba.conf file (See the PostgreSQL section in the Prerequisites). If this is a production evnironment, you may want to change it back to something more secure, such as “password” or “md5”, after the installation is complete.


	Network address of a remote Solr search engine service (if needed) - In most cases, you will be running your Solr server on the same host as the Dataverse application (then you will want to leave this set to the default value of LOCAL). But in a serious production environment you may set it up on a dedicated separate server.




If desired, these default values can be configured by creating a default.config (example here) file in the installer’s working directory with new values (if this file isn’t present, the above defaults will be used).

This allows the installer to be run in non-interactive mode (with ./install -y -f > install.out 2> install.err), which can allow for easier interaction with automated provisioning tools.

All the Glassfish configuration tasks performed by the installer are isolated in the shell script dvinstall/glassfish-setup.sh (as asadmin commands).

IMPORTANT: The installer will also ask for an external site URL for Dataverse. It is imperative that this value be supplied accurately, or a long list of functions will be inoperable, including:


	email confirmation links


	password reset links


	generating a Private URL


	exporting to Schema.org format (and showing JSON-LD in HTML’s <meta/> tag)


	exporting to DDI format


	which Dataverse installation an “external tool” should return to


	which Dataverse installation Geoconnect should return to




IMPORTANT: Please note, that “out of the box” the installer will configure the Dataverse to leave unrestricted access to the administration APIs from (and only from) localhost. Please consider the security implications of this arrangement (anyone with shell access to the server can potentially mess with your Dataverse). An alternative solution would be to block open access to these sensitive API endpoints completely; and to only allow requests supplying a pre-defined “unblock token” (password). If you prefer that as a solution, please consult the supplied script post-install-api-block.sh for examples on how to set it up. See also “Securing Your Installation” under the Configuration section.

Dataverse uses JHOVE [http://jhove.openpreservation.org] to help identify the file format (CSV, PNG, etc.) for files that users have uploaded. The installer places files called jhove.conf and jhoveConfig.xsd into the directory /usr/local/glassfish4/glassfish/domains/domain1/config by default and makes adjustments to the jhove.conf file based on the directory into which you chose to install Glassfish.

The script is to a large degree a derivative of the old installer from DVN 3.x. It is written in Perl. If someone in the community is eager to rewrite it, perhaps in a different language, please get in touch. :)




Logging In

Out of the box, Glassfish runs on port 8080 and 8181 rather than 80 and 443, respectively, so visiting http://localhost:8080 (substituting your hostname) should bring up a login page. See the Shibboleth page for more on ports, but for now, let’s confirm we can log in by using port 8080. Poke a temporary hole in your firewall, if needed.


Superuser Account

We’ll use the superuser account created by the installer to make sure you can log into Dataverse. For more on the difference between being a superuser and having the “Admin” role, read about configuring the root dataverse in the Configuration section.

(The dvinstall/setup-all.sh script, which is called by the installer sets the password for the superuser account account and the username and email address come from a file it references at dvinstall/data/user-admin.json.)

Use the following credentials to log in:


	URL: http://localhost:8080


	username: dataverseAdmin


	password: admin




Congratulations! You have a working Dataverse installation. Soon you’ll be tweeting at @dataverseorg [https://twitter.com/dataverseorg] asking to be added to the map at http://dataverse.org :)

Trouble? See if you find an answer in the troubleshooting section below.

Next you’ll want to check out the Configuration section, especially the section on security which reminds you to change the password above.






Troubleshooting

If the following doesn’t apply, please get in touch as explained in the Introduction. You may be asked to provide glassfish4/glassfish/domains/domain1/logs/server.log for debugging.


Dataset Cannot Be Published

Check to make sure you used a fully qualified domain name when installing Dataverse. You can change the dataverse.fqdn JVM option after the fact per the Configuration section.




Problems Sending Email

If your Dataverse installation is not sending system emails, you may need to provide authentication for your mail host. First, double check the SMTP server being used with this Glassfish asadmin command:

./asadmin get server.resources.mail-resource.mail/notifyMailSession.host

This should return the DNS of the mail host you configured during or after installation. mail/notifyMailSession is the JavaMail Session that’s used to send emails to users.

If the command returns a host you don’t want to use, you can modify your notifyMailSession with the Glassfish asadmin set command with necessary options (click here for the manual page [https://docs.oracle.com/cd/E18930_01/html/821-2433/set-1.html]), or via the admin console at http://localhost:4848 with your domain running.

If your mail host requires a username/password for access, continue to the next section.




Mail Host Configuration & Authentication

If you need to alter your mail host address, user, or provide a password to connect with, these settings are easily changed in the Glassfish admin console or via command line.

For the Glassfish console, load a browser with your domain online, navigate to http://localhost:4848 and on the side panel find JavaMail Sessions. By default, Dataverse uses a session named mail/notifyMailSession for routing outgoing emails. Click this mail session in the window to modify it.

When fine tuning your JavaMail Session, there are a number of fields you can edit. The most important are:


	Mail Host: Desired mail host’s DNS address (e.g. smtp.gmail.com)


	Default User: Username mail host will recognize (e.g. user@gmail.com)


	Default Sender Address: Email address that your Dataverse will send mail from




Depending on the SMTP server you’re using, you may need to add additional properties at the bottom of the page (below “Advanced”).

From the “Add Properties” utility at the bottom, use the “Add Property” button for each entry you need, and include the name / corresponding value as needed. Descriptions are optional, but can be used for your own organizational needs.

Note: These properties are just an example. You may need different/more/fewer properties all depending on the SMTP server you’re using.







	Name

	Value





	mail.smtp.auth

	true



	mail.smtp.password

	[Default User password*]



	mail.smtp.port

	[Port number to route through]






*WARNING: Entering a password here will not conceal it on-screen. It’s recommended to use an app password (for smtp.gmail.com users) or utilize a dedicated/non-personal user account with SMTP server auths so that you do not risk compromising your password.

If your installation’s mail host uses SSL (like smtp.gmail.com) you’ll need these name/value pair properties in place:







	Name

	Value





	mail.smtp.socketFactory.port

	465



	mail.smtp.port

	465



	mail.smtp.socketFactory.fallback

	false



	mail.smtp.socketFactory.class

	javax.net.ssl.SSLSocketFactory






The mail session can also be set from command line. To use this method, you will need to delete your notifyMailSession and create a new one. See the below example:


	Delete: ./asadmin delete-javamail-resource mail/notifyMailSession


	Create (remove brackets and replace the variables inside): ./asadmin create-javamail-resource --mailhost [smtp.gmail.com] --mailuser [test\@test\.com] --fromaddress [test\@test\.com] --property mail.smtp.auth=[true]:mail.smtp.password=[password]:mail.smtp.port=[465]:mail.smtp.socketFactory.port=[465]:mail.smtp.socketFactory.fallback=[false]:mail.smtp.socketFactory.class=[javax.net.ssl.SSLSocketFactory] mail/notifyMailSession




Be sure you save the changes made here and then restart your Glassfish server to test it out.




UnknownHostException While Deploying

If you are seeing “Caused by: java.net.UnknownHostException: myhost: Name or service not known” in server.log and your hostname is “myhost” the problem is likely that “myhost” doesn’t appear in /etc/hosts. See also http://stackoverflow.com/questions/21817809/glassfish-exception-during-deployment-project-with-stateful-ejb/21850873#21850873






Fresh Reinstall

Early on when you’re installing Dataverse, you may think, “I just want to blow away what I’ve installed and start over.” That’s fine. You don’t have to uninstall the various components like Glassfish, PostgreSQL and Solr, but you should be conscious of how to clear out their data.


Drop database

In order to drop the database, you have to stop Glassfish, which will have open connections. Before you stop Glassfish, you may as well undeploy the war file. First, find the name like this:

./asadmin list-applications

Then undeploy it like this:

./asadmin undeploy dataverse-VERSION

Stop Glassfish with the init script provided in the Prerequisites section or just use:

./asadmin stop-domain

With Glassfish down, you should now be able to drop your database and recreate it:

psql -U dvnapp -c 'DROP DATABASE "dvndb"' template1




Clear Solr

The database is fresh and new but Solr has stale data it in. Clear it out with this command:

curl http://localhost:8983/solr/collection1/update/json?commit=true -H "Content-type: application/json" -X POST -d "{\"delete\": { \"query\":\"*:*\"}}"




Deleting Uploaded Files

The path below will depend on the value for dataverse.files.directory as described in the Configuration section:

rm -rf /usr/local/glassfish4/glassfish/domains/domain1/files




Rerun Installer

With all the data cleared out, you should be ready to rerun the installer per above.

Related to all this is a series of scripts at https://github.com/IQSS/dataverse/blob/develop/scripts/deploy/phoenix.dataverse.org/deploy that Dataverse developers use have the test server http://phoenix.dataverse.org rise from the ashes before integration tests are run against it. Your mileage may vary. :) For more on this topic, see “Rebuilding Your Dev Environment” in the Development Environment section of the Developer Guide.









          

      

      

    





  

    
      
          
            
  
Configuration

Now that you’ve successfully logged into Dataverse with a superuser account after going through a basic Installation, you’ll need to secure and configure your installation.

Settings within Dataverse itself are managed via JVM options or by manipulating values in the setting table directly or through API calls.

Once you have finished securing and configuring your Dataverse installation, you may proceed to the Admin Guide for more information on the ongoing administration of a Dataverse installation. Advanced configuration topics are covered in the TwoRavens, Shibboleth and OAuth Login: ORCID, GitHub, Google sections.


Contents:


	Securing Your Installation


	Changing the Superuser Password


	Blocking API Endpoints


	Forcing HTTPS


	Privacy Considerations


	Additional Recommendations


	Run Glassfish as a User Other Than Root


	Enforce Strong Passwords for User Accounts






	Network Ports


	Root Dataverse Permissions


	Persistent Identifiers and Publishing Datasets


	Configuring Dataverse for DOIs


	Configuring Dataverse for Handles






	Auth Modes: Local vs. Remote vs. Both


	File Storage: Local Filesystem vs. Swift vs. S3


	Swift Storage


	Setting up Compute


	Amazon S3 Storage (or Compatible)


	First: Set Up Accounts and Access Credentials


	Preparation When Using Amazon’s S3 Service


	Preparation When Using Custom S3-Compatible Service


	Reported Working S3-Compatible Storage


	Manually Set Up Credentials File


	Console Commands to Set Up Access Configuration






	Second: Configure Dataverse to use S3 Storage


	S3 Storage Options














	Branding Your Installation


	Custom Homepage


	Custom Navbar Logo


	Custom Header


	Custom Footer


	Custom Stylesheet






	Going Live: Launching Your Production Deployment


	Letting Search Engines Crawl Your Installation


	Ensure robots.txt Is Not Blocking Search Engines


	Creating a Sitemap and Submitting it to Search Engines






	Putting Your Dataverse Installation on the Map at dataverse.org


	Administration of Your Dataverse Installation


	Setting Up Integrations






	JVM Options


	dataverse.fqdn


	dataverse.siteUrl


	dataverse.files.directory


	dataverse.auth.password-reset-timeout-in-minutes


	dataverse.rserve.host


	dataverse.rserve.port


	dataverse.rserve.user


	dataverse.rserve.tempdir


	dataverse.rserve.password


	dataverse.dropbox.key


	dataverse.path.imagemagick.convert


	dataverse.dataAccess.thumbnail.image.limit


	dataverse.dataAccess.thumbnail.pdf.limit


	doi.baseurlstring


	doi.username


	doi.password


	dataverse.handlenet.admcredfile


	dataverse.handlenet.admprivphrase


	dataverse.handlenet.index


	dataverse.timerServer


	dataverse.lang.directory


	dataverse.files.hide-schema-dot-org-download-urls






	Database Settings


	:BlockedApiPolicy


	:BlockedApiEndpoints


	:BlockedApiKey


	BuiltinUsers.KEY


	:SearchApiRequiresToken


	:SystemEmail


	:HomePageCustomizationFile


	:LogoCustomizationFile


	:HeaderCustomizationFile


	:DisableRootDataverseTheme


	:FooterCustomizationFile


	:StyleCustomizationFile


	:FooterCopyright


	:DoiProvider


	:Protocol


	:Authority


	:Shoulder


	:IdentifierGenerationStyle


	:DataFilePIDFormat


	:FilePIDsEnabled


	:ApplicationTermsOfUse


	:ApplicationPrivacyPolicyUrl


	:ApiTermsOfUse


	:ExcludeEmailFromExport


	:NavbarAboutUrl


	:GuidesBaseUrl


	:GuidesVersion


	:NavbarSupportUrl


	:MetricsUrl


	:StatusMessageHeader


	:StatusMessageText


	:MaxFileUploadSizeInBytes


	:ZipDownloadLimit


	:TabularIngestSizeLimit


	:ZipUploadFilesLimit


	:GoogleAnalyticsCode


	:SolrHostColonPort


	:SolrFullTextIndexing


	:SolrMaxFileSizeForFullTextIndexing


	:SignUpUrl


	:TwoRavensUrl


	:TwoRavensTabularView


	:GeoconnectCreateEditMaps


	:GeoconnectViewMaps


	:DatasetPublishPopupCustomText


	:DatasetPublishPopupCustomTextOnAllVersions


	:SearchHighlightFragmentSize


	:ScrubMigrationData


	:MinutesUntilConfirmEmailTokenExpires


	:DefaultAuthProvider


	:AllowSignUp


	:PiwikAnalyticsId


	:PiwikAnalyticsHost


	:PiwikAnalyticsTrackerFileName


	:FileFixityChecksumAlgorithm


	:PVMinLength


	:PVMaxLength


	:PVNumberOfConsecutiveDigitsAllowed


	:PVCharacterRules


	:PVNumberOfCharacteristics


	:PVDictionaries


	:PVGoodStrength


	:PVCustomPasswordResetAlertMessage


	:ShibPassiveLoginEnabled


	:ComputeBaseUrl


	:CloudEnvironmentName


	:PublicInstall


	:DataCaptureModuleUrl


	:RepositoryStorageAbstractionLayerUrl


	:UploadMethods


	:DownloadMethods


	:GuestbookResponsesPageDisplayLimit


	:CustomDatasetSummaryFields


	:AllowApiTokenLookupViaApi


	:ProvCollectionEnabled


	:MetricsCacheTimeoutMinutes


	:Languages


	:InheritParentRoleAssignments











Securing Your Installation


Changing the Superuser Password

The default password for the “dataverseAdmin” superuser account is “admin”, as mentioned in the Installation section, and you should change it, of course.




Blocking API Endpoints

The Native API contains a useful but potentially dangerous API endpoint called “admin” that allows you to change system settings, make ordinary users into superusers, and more. The builtin-users endpoint lets people create a local/builtin user account if they know the BuiltinUsers.KEY value described below.

By default, all APIs can be operated on remotely and a number of endpoints do not require authentication. https://github.com/IQSS/dataverse/issues/1886 was opened to explore changing these defaults, but until then it is very important to block both the “admin” endpoint (and at least consider blocking builtin-users). For details please see also the section on :BlockedApiPolicy below.

It’s also possible to prevent file uploads via API by adjusting the :UploadMethods database setting.




Forcing HTTPS

To avoid having your users send credentials in the clear, it’s strongly recommended to force all web traffic to go through HTTPS (port 443) rather than HTTP (port 80). The ease with which one can install a valid SSL cert into Apache compared with the same operation in Glassfish might be a compelling enough reason to front Glassfish with Apache. In addition, Apache can be configured to rewrite HTTP to HTTPS with rules such as those found at https://wiki.apache.org/httpd/RewriteHTTPToHTTPS or in the section on Shibboleth.




Privacy Considerations

Out of the box, Dataverse will list email addresses of the “contacts” for datasets when users visit a dataset page and click the “Export Metadata” button. If you prefer to exclude email addresses of dataset contacts from metadata export, set :ExcludeEmailFromExport to true.




Additional Recommendations




Run Glassfish as a User Other Than Root

See the Glassfish section of Prerequisites for details and init scripts for running Glassfish as non-root.

Related to this is that you should remove /root/.glassfish/pass to ensure that Glassfish isn’t ever accidentally started as root. Without the password, Glassfish won’t be able to start as root, which is a good thing.




Enforce Strong Passwords for User Accounts

Dataverse only stores passwords (as salted hash, and using a strong hashing algorithm) for “builtin” users. You can increase the password complexity rules to meet your security needs. If you have configured your Dataverse installation to allow login from remote authentication providers such as Shibboleth, ORCID, GitHub or Google, you do not have any control over those remote providers’ password complexity rules. See the “Auth Modes: Local vs. Remote vs. Both” section below for more on login options.

Even if you are satisfied with the out-of-the-box password complexity rules Dataverse ships with, for the “dataverseAdmin” account you should use a strong password so the hash cannot easily be cracked through dictionary attacks.

Password complexity rules for “builtin” accounts can be adjusted with a variety of settings documented below. Here’s a list:


	:PVMinLength


	:PVMaxLength


	:PVNumberOfConsecutiveDigitsAllowed


	:PVCharacterRules


	:PVNumberOfCharacteristics


	:PVDictionaries


	:PVGoodStrength


	:PVCustomPasswordResetAlertMessage









Network Ports

Remember how under “Decisions to Make” in the Preparation section we mentioned you’ll need to make a decision about whether or not to introduce a proxy in front of Dataverse such as Apache or nginx? The time has come to make that decision.

The need to redirect port HTTP (port 80) to HTTPS (port 443) for security has already been mentioned above and the fact that Glassfish puts these services on 8080 and 8181, respectively, was touched on in the Installation section. In production, you don’t want to tell your users to use Dataverse on ports 8080 and 8181. You should have them use the standard HTTPS port, which is 443.

Your decision to proxy or not should primarily be driven by which features of Dataverse you’d like to use. If you’d like to use Shibboleth, the decision is easy because proxying or “fronting” Glassfish with Apache is required. The details are covered in the Shibboleth section.

If you’d like to use TwoRavens, you should also consider fronting with Apache because you will be required to install an Apache anyway to make use of the rApache module. For details, see the TwoRavens section.

Even if you have no interest in Shibboleth nor TwoRavens, you may want to front Dataverse with Apache or nginx to simply the process of installing SSL certificates. There are many tutorials on the Internet for adding certs to Apache, including a some notes used by the Dataverse team [https://github.com/IQSS/dataverse/blob/v4.6.1/doc/shib/shib.md], but the process of adding a certificate to Glassfish is arduous and not for the faint of heart. The Dataverse team cannot provide much help with adding certificates to Glassfish beyond linking to tips [http://stackoverflow.com/questions/906402/importing-an-existing-x509-certificate-and-private-key-in-java-keystore-to-use-i] on the web.

Still not convinced you should put Glassfish behind another web server? Even if you manage to get your SSL certificate into Glassfish, how are you going to run Glassfish on low ports such as 80 and 443? Are you going to run Glassfish as root? Bad idea. This is a security risk. Under “Additional Recommendations” under “Securing Your Installation” above you are advised to configure Glassfish to run as a user other than root. (The Dataverse team will close https://github.com/IQSS/dataverse/issues/1934 after updating the Glassfish init script provided in the Prerequisites section to not require root.)

There’s also the issue of serving a production-ready version of robots.txt. By using a proxy such as Apache, this is a one-time “set it and forget it” step as explained below in the “Going Live” section.

If you are convinced you’d like to try fronting Glassfish with Apache, the Shibboleth section should be good resource for you.

If you really don’t want to front Glassfish with any proxy (not recommended), you can configure Glassfish to run HTTPS on port 443 like this:

./asadmin set server-config.network-config.network-listeners.network-listener.http-listener-2.port=443

What about port 80? Even if you don’t front Dataverse with Apache, you may want to let Apache run on port 80 just to rewrite HTTP to HTTPS as described above. You can use a similar command as above to change the HTTP port that Glassfish uses from 8080 to 80 (substitute http-listener-1.port=80). Glassfish can be used to enforce HTTPS on its own without Apache, but configuring this is an exercise for the reader. Answers here may be helpful: http://stackoverflow.com/questions/25122025/glassfish-v4-java-7-port-unification-error-not-able-to-redirect-http-to

If you are running an installation with Apache and Glassfish on the same server, and would like to restrict Glassfish from responding to any requests to port 8080 from external hosts (in other words, not through Apache), you can restrict the AJP listener to localhost only with:

./asadmin set server-config.network-config.network-listeners.network-listener.http-listener-1.address=127.0.0.1

You should NOT use the configuration option above if you are running in a load-balanced environment, or otherwise have the web server on a different host than the application server.




Root Dataverse Permissions

The user who creates a dataverse is given the “Admin” role on that dataverse. The root dataverse is created automatically for you by the installer and the “Admin” is the superuser account (“dataverseAdmin”) we used in the Installation section to confirm that we can log in. These next steps of configuring the root dataverse require the “Admin” role on the root dataverse, but not the much more powerful superuser attribute. In short, users with the “Admin” role are subject to the permission system. A superuser, on the other hand, completely bypasses the permission system. You can give non-superusers the “Admin” role on the root dataverse if you’d like them to configure the root dataverse.

In order for non-superusers to start creating dataverses or datasets, you need click “Edit” then “Permissions” and make choices about which users can add dataverses or datasets within the root dataverse. (There is an API endpoint for this operation as well.) Again, the user who creates a dataverse will be granted the “Admin” role on that dataverse. Non-superusers who are not “Admin” on the root dataverse will not be able to to do anything useful until the root dataverse has been published.

As the person installing Dataverse you may or may not be a local metadata expert. You may want to have others sign up for accounts and grant them the “Admin” role at the root dataverse to configure metadata fields, templates, browse/search facets, guestbooks, etc. For more on these topics, consult the Dataverse Management section of the User Guide.




Persistent Identifiers and Publishing Datasets

Persistent identifiers are a required and integral part of the Dataverse platform. They provide a URL that is guaranteed to resolve to the datasets or files they represent. Dataverse currently supports creating identifiers using DOI and Handle.

By default, the installer configures a test DOI namespace (10.5072) with DataCite as the registration provider. Please note that as of the release 4.9.3, we can no longer use EZID as the provider. Unlike EZID, DataCite requires that you register for a test account (please contact support@datacite.org). Once you receive the login name and password for the account, configure it in your domain.xml, as the following two JVM options:

<jvm-options>-Ddoi.username=...</jvm-options>
<jvm-options>-Ddoi.password=...</jvm-options>





and restart Glassfish. Once this is done, you will be able to publish datasets and files, but the persistent identifiers will not be citable or guaranteed to be preserved. Note that any datasets or files created using the test configuration cannot be directly migrated and would need to be created again once a valid DOI namespace is configured.

To properly configure persistent identifiers for a production installation, an account and associated namespace must be acquired for a fee from a DOI or HDL provider. DataCite (https://www.datacite.org) is the recommended DOI provider (see https://dataverse.org/global-dataverse-community-consortium for more on joining DataCite) but EZID (http://ezid.cdlib.org) is an option for the University of California according to https://www.cdlib.org/cdlinfo/2017/08/04/ezid-doi-service-is-evolving/ . Handle.Net (https://www.handle.net) is the HDL provider.

Once you have your DOI or Handle account credentials and a namespace, configure Dataverse to use them using the JVM options and database settings below.


Configuring Dataverse for DOIs

By default Dataverse attempts to register DOIs for each dataset and file under a test authority, though you must apply for your own credentials as explained above.

Here are the configuration options for DOIs:

JVM Options:


	doi.baseurlstring


	doi.username


	doi.password




Database Settings:


	:DoiProvider


	:Protocol


	:Authority


	:Shoulder


	:IdentifierGenerationStyle (optional)


	:DataFilePIDFormat (optional)


	:FilePIDsEnabled (optional, defaults to true)







Configuring Dataverse for Handles

Here are the configuration options for handles:

JVM Options:


	dataverse.handlenet.admcredfile


	dataverse.handlenet.admprivphrase


	dataverse.handlenet.index




Database Settings:


	:Protocol


	:Authority


	:IdentifierGenerationStyle (optional)


	:DataFilePIDFormat (optional)




Note: If you are minting your own handles and plan to set up your own handle service, please refer to Handle.Net documentation [http://handle.net/hnr_documentation.html].






Auth Modes: Local vs. Remote vs. Both

There are three valid configurations or modes for authenticating users to Dataverse:


	Local only (also known as “builtin” or “Username/Email”).


	Both local and remote (Shibboleth and/or OAuth).


	Remote (Shibboleth and/or OAuth) only.




Out of the box, Dataverse is configured in “local only” mode. The “dataverseAdmin” superuser account mentioned in the Installation section is an example of a local account. Internally, these accounts are called “builtin” because they are built in to the Dataverse application itself.

To configure Shibboleth see the Shibboleth section and to configure OAuth see the OAuth Login: ORCID, GitHub, Google section.

The authenticationproviderrow database table controls which “authentication providers” are available within Dataverse. Out of the box, a single row with an id of “builtin” will be present. For each user in Dataverse, the authenticateduserlookup table will have a value under authenticationproviderid that matches this id. For example, the default “dataverseAdmin” user will have the value “builtin” under  authenticationproviderid. Why is this important? Users are tied to a specific authentication provider but conversion mechanisms are available to switch a user from one authentication provider to the other. As explained in the Account Creation + Management section of the User Guide, a graphical workflow is provided for end users to convert from the “builtin” authentication provider to a remote provider. Conversion from a remote authentication provider to the builtin provider can be performed by a sysadmin with access to the “admin” API. See the Native API section of the API Guide for how to list users and authentication providers as JSON.

Enabling a second authentication provider will result in the Log In page showing additional providers for your users to choose from. By default, the Log In page will show the “builtin” provider, but you can adjust this via the :DefaultAuthProvider configuration option.

“Remote only” mode should be considered experimental until https://github.com/IQSS/dataverse/issues/2974 is resolved. For now, “remote only” means:


	Shibboleth or OAuth has been enabled.


	:AllowSignUp is set to “false” per the Configuration section to prevent users from creating local accounts via the web interface. Please note that local accounts can also be created via API, and the way to prevent this is to block the builtin-users endpoint or scramble (or remove) the BuiltinUsers.KEY database setting per the Configuration section.


	The “builtin” authentication provider has been disabled. Note that disabling the builting auth provider means that the API endpoint for converting an account from a remote auth provider will not work. This is the main reason why https://github.com/IQSS/dataverse/issues/2974 is still open. Converting directly from one remote authentication provider to another (i.e. from GitHub to Google) is not supported. Conversion from remote is always to builtin. Then the user initiates a conversion from builtin to remote. Note that longer term, the plan is to permit multiple login options to the same Dataverse account per https://github.com/IQSS/dataverse/issues/3487 (so all this talk of conversion will be moot) but for now users can only use a single login option, as explained in the Account Creation + Management section of the User Guide. In short, “remote only” might work for you if you only plan to use a single remote authentication provider such that no conversion between remote authentication providers will be necessary.







File Storage: Local Filesystem vs. Swift vs. S3

By default, a Dataverse installation stores data files (files uploaded by end users) on the filesystem at /usr/local/glassfish4/glassfish/domains/domain1/files but this path can vary based on answers you gave to the installer (see the Running the Dataverse Installer section of the Installation Guide) or afterward by reconfiguring the dataverse.files.directory JVM option described below.


Swift Storage

Rather than storing data files on the filesystem, you can opt for an experimental setup with a Swift Object Storage [http://swift.openstack.org] backend. Each dataset that users create gets a corresponding “container” on the Swift side, and each data file is saved as a file within that container.

In order to configure a Swift installation, there are two steps you need to complete:

First, create a file named swift.properties as follows in the config directory for your installation of Glassfish (by default, this would be /usr/local/glassfish4/glassfish/domains/domain1/config/swift.properties):

swift.default.endpoint=endpoint1
swift.auth_type.endpoint1=your-authentication-type
swift.auth_url.endpoint1=your-auth-url
swift.tenant.endpoint1=your-tenant-name
swift.username.endpoint1=your-username
swift.password.endpoint1=your-password
swift.swift_endpoint.endpoint1=your-swift-endpoint





auth_type can either be keystone, keystone_v3, or it will assumed to be basic. auth_url should be your keystone authentication URL which includes the tokens (e.g. for keystone, https://openstack.example.edu:35357/v2.0/tokens and for keystone_v3, https://openstack.example.edu:35357/v3/auth/tokens). swift_endpoint is a URL that look something like http://rdgw.swift.example.org/swift/v1.

Second, update the JVM option dataverse.files.storage-driver-id by running the delete command:

./asadmin $ASADMIN_OPTS delete-jvm-options "\-Ddataverse.files.storage-driver-id=file"

Then run the create command:

./asadmin $ASADMIN_OPTS create-jvm-options "\-Ddataverse.files.storage-driver-id=swift"

You also have the option to set a custom container name separator. It is initialized to _, but you can change it by running the create command:

./asadmin $ASADMIN_OPTS create-jvm-options "\-Ddataverse.files.swift-folder-path-separator=-"

By default, your Swift installation will be public-only, meaning users will be unable to put access restrictions on their data. If you are comfortable with this level of privacy, the final step in your setup is to set the  :PublicInstall setting to true.

In order to enable file access restrictions, you must enable Swift to use temporary URLs for file access. To enable usage of temporary URLs, set a hash key both on your swift endpoint and in your swift.properties file. You can do so by adding

swift.hash_key.endpoint1=your-hash-key





to your swift.properties file.

You also have the option to set a custom expiration length for a generated temporary URL. It is initialized to 60 seconds, but you can change it by running the create command:

./asadmin $ASADMIN_OPTS create-jvm-options "\-Ddataverse.files.temp_url_expire=3600"

In this example, you would be setting the expiration length for one hour.




Setting up Compute

Once you have configured a Swift Object Storage backend, you also have the option of enabling a connection to a computing environment. To do so, you need to configure the database settings for :ComputeBaseUrl and  :CloudEnvironmentName.

Once you have set up :ComputeBaseUrl properly in both Dataverse and your cloud environment, validated users will have three options for accessing the computing environment:


	Compute on a single dataset


	Compute on multiple datasets


	Compute on a single datafile




The compute buttons on dataset and file pages will link validated users to your computing environment. If a user is computing on one dataset, the compute button will redirect to:

:ComputeBaseUrl?datasetPersistentId

If a user is computing on multiple datasets, the compute button will redirect to:

:ComputeBaseUrl/multiparty?datasetPersistentId&anotherDatasetPersistentId&anotherDatasetPersistentId&...

If a user is computing on a single file, depending on the configuration of your installation, the compute button will either redirect to:

:ComputeBaseUrl?datasetPersistentId=yourObject

if your installation’s :PublicInstall setting is true, or:

:ComputeBaseUrl?datasetPersistentId=yourObject&temp_url_sig=yourTempUrlSig&temp_url_expires=yourTempUrlExpiry

You can configure this redirect properly in your cloud environment to generate a temporary URL for access to the Swift objects for computing.




Amazon S3 Storage (or Compatible)

For institutions and organizations looking to use some kind of S3-based object storage for files uploaded to Dataverse,
this is entirely possible. You can either use Amazon Web Services or use some other, even on-site S3-compatible
storage (like Minio, Ceph RADOS S3 Gateway and many more).

Note: The Dataverse Team is most familiar with AWS S3, and can provide support on its usage with Dataverse. Thanks to community contributions, the application’s architecture also allows non-AWS S3 providers. The Dataverse Team can provide very limited support on these other providers. We recommend reaching out to the wider Dataverse community if you have questions.


First: Set Up Accounts and Access Credentials

Dataverse and the AWS SDK make use of the “AWS credentials profile file” and “AWS config profile file” located in
~/.aws/ where ~ is the home directory of the user you run Glassfish as. This file can be generated via either
of two methods described below:


	Manually through creation of the credentials and config files or


	Automatically via the AWS console commands.





Preparation When Using Amazon’s S3 Service

You’ll need an AWS account with an associated S3 bucket for your installation to use. From the S3 management console
(e.g. https://console.aws.amazon.com/), you can poke around and get familiar with your bucket.

Make note of the bucket’s name and the region its data is hosted in.

To create a user with full S3 access and nothing more for security reasons, we recommend using IAM
(Identity and Access Management). See IAM User Guide [http://docs.aws.amazon.com/IAM/latest/UserGuide/id_users.html]
for more info on this process.

Generate the user keys needed for Dataverse afterwards by clicking on the created user.
(You can skip this step when running on EC2, see below.)


Tip

If you are hosting Dataverse on an AWS EC2 instance alongside storage in S3, it is possible to use IAM Roles instead
of the credentials file (the file at ~/.aws/credentials mentioned below). Please note that you will still need the
~/.aws/config file to specify the region. For more information on this option, see
http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/iam-roles-for-amazon-ec2.html






Preparation When Using Custom S3-Compatible Service

We assume you have your S3-compatible custom storage in place, up and running, ready for service.

Please make note of the following details:


	Endpoint URL - consult the documentation of your service on how to find it.



	Example: https://play.minio.io:9000









	Region: Optional, but some services might use it. Consult your service documentation.



	Example: us-east-1









	Access key ID and secret access key: Usually you can generate access keys within the user profile of your service.



	Example:


	ID: Q3AM3UQ867SPQQA43P2F


	Key: zuf+tfteSlswRu7BJ86wekitnifILbZam1KYY3TG













	Bucket name: Dataverse will fail opening and uploading files on S3 if you don’t create one.



	Example: dataverse














Reported Working S3-Compatible Storage


	Minio v2018-09-12 [http://minio.io]

	Set dataverse.files.s3-path-style-access=true, as Minio works path-based. Works pretty smooth, easy to setup.
Can be used for quick testing, too: just use the example values above. Uses the public (read: unsecure and
possibly slow) https://play.minio.io:9000 service.





HINT: If you are successfully using an S3 storage implementation not yet listed above, please feel free to
open an issue at Github [https://github.com/IQSS/dataverse/issues/new] and describe your setup.
We will be glad to add it here.




Manually Set Up Credentials File

To create the ~/.aws/credentials file manually, you will need to generate a key/secret key (see above). Once you have
acquired the keys, they need to be added to the credentials file. The format for credentials is as follows:

[default]
aws_access_key_id = <insert key, no brackets>
aws_secret_access_key = <insert secret key, no brackets>





While using Amazon’s service, you must also specify the AWS region in the ~/.aws/config file, for example:

[default]
region = us-east-1





Place these two files in a folder named .aws under the home directory for the user running your Dataverse Glassfish
instance. (From the AWS Command Line Interface Documentation [http://docs.aws.amazon.com/cli/latest/userguide/cli-config-files.html]:
“In order to separate credentials from less sensitive options, region and output format are stored in a separate file
named config in the same folder”)




Console Commands to Set Up Access Configuration

Begin by installing the CLI tool pip [https://pip.pypa.io//en/latest/] to install the
AWS command line interface [https://aws.amazon.com/cli/] if you don’t have it.

First, we’ll get our access keys set up. If you already have your access keys configured, skip this step.
From the command line, run:


	pip install awscli


	aws configure




You’ll be prompted to enter your Access Key ID and secret key, which should be issued to your AWS account.
The subsequent config steps after the access keys are up to you. For reference, the keys will be stored in
~/.aws/credentials, and your AWS access region in ~/.aws/config.


	TIP: When using a custom S3 URL endpoint, you need to add it to every aws call: aws --endpoint-url <URL> s3 ...

	(you may omit it while configuring).










Second: Configure Dataverse to use S3 Storage

With access to your bucket in place, we’ll want to navigate to /usr/local/glassfish4/glassfish/bin/
and execute the following asadmin commands to set up the proper JVM options. Recall that out of the box, Dataverse
is configured to use local file storage. You’ll need to delete the existing storage driver before setting the new one.

./asadmin $ASADMIN_OPTS delete-jvm-options "-Ddataverse.files.storage-driver-id=file"
./asadmin $ASADMIN_OPTS create-jvm-options "-Ddataverse.files.storage-driver-id=s3"





Then, we’ll need to identify which S3 bucket we’re using. Replace your_bucket_name with, of course, your bucket:

./asadmin create-jvm-options "-Ddataverse.files.s3-bucket-name=your_bucket_name"

Optionally, you can have users download files from S3 directly rather than having files pass from S3 through Glassfish to your users. To accomplish this, set dataverse.files.s3-download-redirect to true like this:

./asadmin create-jvm-options "-Ddataverse.files.s3-download-redirect=true"

If you enable dataverse.files.s3-download-redirect as described above, note that the S3 URLs expire after an hour by default but you can configure the expiration time using the dataverse.files.s3-url-expiration-minutes JVM option. Here’s an example of setting the expiration time to 120 minutes:

./asadmin create-jvm-options "-Ddataverse.files.s3-url-expiration-minutes=120"

In case you would like to configure Dataverse to use a custom S3 service instead of Amazon S3 services, please
add the options for the custom URL and region as documented below. Please read above if your desired combination has
been tested already and what other options have been set for a successful integration.

Lastly, go ahead and restart your glassfish server. With Dataverse deployed and the site online, you should be able to upload datasets and data files and see the corresponding files in your S3 bucket. Within a bucket, the folder structure emulates that found in local file storage.


S3 Storage Options









	JVM Option

	Value

	Description

	Default value





	dataverse.files.storage-driver-id

	s3

	Enable S3 storage driver.

	file



	dataverse.files.s3-bucket-name

	<?>

	The bucket name. See above.

	(none)



	dataverse.files.s3-download-redirect

	true/false

	Enable direct download or proxy through Dataverse.

	false



	dataverse.files.s3-url-expiration-minutes

	<?>

	If direct downloads: time until links expire. Optional.

	60



	dataverse.files.s3-custom-endpoint-url

	<?>

	Use custom S3 endpoint. Needs URL either with or without protocol.

	(none)



	dataverse.files.s3-custom-endpoint-region

	<?>

	Only used when using custom endpoint. Optional.

	dataverse



	dataverse.files.s3-path-style-access

	true/false

	Use path style buckets instead of subdomains. Optional.

	false















Branding Your Installation

The name of your root dataverse is the brand of your installation of Dataverse and appears in various places such as notifications and support links, as outlined in the :SystemEmail section below. To further brand your installation and make it your own, Dataverse provides configurable options for easy-to-add (and maintain) custom branding for your Dataverse installation. Here are the custom branding and content options you can add:


	Custom welcome/homepage


	Logo image to navbar


	Header


	Footer


	CSS stylesheet




Downloadable sample HTML and CSS files are provided below which you can edit as you see fit. It’s up to you to create a directory in which to store these files, such as /var/www/dataverse in the examples below.

You may also want to look at samples at https://github.com/shlake/LibraDataHomepage from community member Sherry Lake as well as her poster from the Dataverse Community Meeting 2018 called “Branding Your Local Dataverse”: https://github.com/IQSS/dataverse/files/2128735/UVaHomePage.pdf

A simpler option to brand and customize your installation is to utilize the dataverse theme, which each dataverse has, that allows you to change colors, add a logo, tagline or website link to the dataverse header section of the page. Those options are outlined in the Dataverse Management section of the User Guide.


Custom Homepage

Dataverse allows you to use a custom homepage or welcome page in place of the default root dataverse page. This allows for complete control over the look and feel of your installation’s homepage.

Download this sample: custom-homepage.html and place it at /var/www/dataverse/branding/custom-homepage.html.

Once you have the location of your custom homepage HTML file, run this curl command to add it to your settings:

curl -X PUT -d '/var/www/dataverse/branding/custom-homepage.html' http://localhost:8080/api/admin/settings/:HomePageCustomizationFile

If you prefer to start with less of a blank slate, you can download the custom-homepage-dynamic.html template which was built for the Harvard Dataverse, and includes branding messaging, action buttons, search input, subject links, and recent dataset links. This page was built to utilize the Metrics API to deliver dynamic content to the page via javascript.

Note that the custom-homepage.html and custom-homepage-dynamic.html files provided have multiple elements that assume your root dataverse still has an alias of “root”. While you were branding your root dataverse, you may have changed the alias to “harvard” or “librascholar” or whatever and you should adjust the custom homepage code as needed.

For more background on what this curl command above is doing, see the “Database Settings” section below. If you decide you’d like to remove this setting, use the following curl command:

curl -X DELETE http://localhost:8080/api/admin/settings/:HomePageCustomizationFile




Custom Navbar Logo

Dataverse allows you to replace the default Dataverse icon and name branding in the navbar with your own custom logo. Note that this logo is separate from the root dataverse theme logo.

The custom logo image file is expected to be small enough to fit comfortably in the navbar, no more than 50 pixels in height and 160 pixels in width. Create a navbar directory in your Glassfish logos directory and place your custom logo there. By Glassfish default, your logo image file will be located at /usr/local/glassfish4/glassfish/domains/domain1/docroot/logos/navbar/logo.png.

Once you have the location of your custom logo image file, run this curl command to add it to your settings:

curl -X PUT -d '/logos/navbar/logo.png' http://localhost:8080/api/admin/settings/:LogoCustomizationFile




Custom Header

Download this sample: custom-header.html and place it at /var/www/dataverse/branding/custom-header.html.

Once you have the location of your custom header HTML file, run this curl command to add it to your settings:

curl -X PUT -d '/var/www/dataverse/branding/custom-header.html' http://localhost:8080/api/admin/settings/:HeaderCustomizationFile

If you have enabled a custom header or navbar logo, you might prefer to disable the theme of the root dataverse. You can do so by setting :DisableRootDataverseTheme to true like this:

curl -X PUT -d 'true' http://localhost:8080/api/admin/settings/:DisableRootDataverseTheme

Please note: Disabling the display of the root dataverse theme also disables your ability to edit it. Remember that dataverse owners can set their dataverses to “inherit theme” from the root. Those dataverses will continue to inherit the root dataverse theme (even though it no longer displays on the root). If you would like to edit the root dataverse theme in the future, you will have to re-enable it first.




Custom Footer

Download this sample: custom-footer.html and place it at /var/www/dataverse/branding/custom-footer.html.

Once you have the location of your custom footer HTML file, run this curl command to add it to your settings:

curl -X PUT -d '/var/www/dataverse/branding/custom-footer.html' http://localhost:8080/api/admin/settings/:FooterCustomizationFile




Custom Stylesheet

You can style your custom homepage, footer and header content with a custom CSS file. With advanced CSS know-how, you can achieve custom branding and page layouts by utilizing position, padding or margin properties.

Download this sample: custom-stylesheet.css and place it at /var/www/dataverse/branding/custom-stylesheet.css.

Once you have the location of your custom CSS file, run this curl command to add it to your settings:

curl -X PUT -d '/var/www/dataverse/branding/custom-stylesheet.css' http://localhost:8080/api/admin/settings/:StyleCustomizationFile






Going Live: Launching Your Production Deployment

This guide has attempted to take you from kicking the tires on Dataverse to finalizing your installation before letting real users in. In theory, all this work could be done on a single server but better would be to have separate staging and production environments so that you can deploy upgrades to staging before deploying to production. This “Going Live” section is about launching your production environment.

Before going live with your installation of Dataverse, you must take the steps above under “Securing Your Installation” and you should at least review the various configuration options listed below. An attempt has been made to put the more commonly-configured options earlier in the list.

Out of the box, Dataverse attempts to block search engines from crawling your installation of Dataverse so that test datasets do not appear in search results until you’re ready.


Letting Search Engines Crawl Your Installation


Ensure robots.txt Is Not Blocking Search Engines

For a public production Dataverse installation, it is probably desired that search agents be able to index published pages (AKA - pages that are visible to an unauthenticated user).
Polite crawlers usually respect the Robots Exclusion Standard [https://en.wikipedia.org/wiki/Robots_exclusion_standard]; we have provided an example of a production robots.txt here).

You have a couple of options for putting an updated robots.txt file into production. If you are fronting Glassfish with Apache as recommended above, you can place robots.txt in the root of the directory specified in your VirtualHost and to your Apache config a ProxyPassMatch line like the one below to prevent Glassfish from serving the version of robots.txt that is embedded in the Dataverse war file:

# don't let Glassfish serve its version of robots.txt
ProxyPassMatch ^/robots.txt$ !





For more of an explanation of ProxyPassMatch see the Shibboleth section.

If you are not fronting Glassfish with Apache you’ll need to prevent Glassfish from serving the robots.txt file embedded in the war file by overwriting robots.txt after the war file has been deployed. The downside of this technique is that you will have to remember to overwrite robots.txt in the “exploded” war file each time you deploy the war file, which probably means each time you upgrade to a new version of Dataverse. Furthermore, since the version of Dataverse is always incrementing and the version can be part of the file path, you will need to be conscious of where on disk you need to replace the file. For example, for Dataverse 4.6.1 the path to robots.txt may be /usr/local/glassfish4/glassfish/domains/domain1/applications/dataverse-4.6.1/robots.txt with the version number 4.6.1 as part of the path.




Creating a Sitemap and Submitting it to Search Engines

Search engines have an easier time indexing content when you provide them a sitemap. The Dataverse sitemap includes URLs to all published dataverses and all published datasets that are not harvested or deaccessioned.

Create or update your sitemap by adding the following curl command to cron to run nightly or as you see fit:

curl -X POST http://localhost:8080/api/admin/sitemap

This will create or update a file in the following location unless you have customized your installation directory for Glassfish:

/usr/local/glassfish4/glassfish/domains/domain1/docroot/sitemap/sitemap.xml

On an installation of Dataverse with many datasets, the creation or updating of the sitemap can take a while. You can check Glassfish’s server.log file for “BEGIN updateSiteMap” and “END updateSiteMap” lines to know when the process started and stopped and any errors in between.

https://demo.dataverse.org/sitemap.xml is the sitemap URL for the Dataverse Demo site and yours should be similar. Submit your sitemap URL to Google by following Google’s “submit a sitemap” instructions [https://support.google.com/webmasters/answer/183668] or similar instructions for other search engines.






Putting Your Dataverse Installation on the Map at dataverse.org

Congratulations! You’ve gone live! It’s time to announce your new data repository to the world! You are also welcome to contact support@dataverse.org to have the Dataverse team add your installation to the map at http://dataverse.org . Thank you for installing Dataverse!




Administration of Your Dataverse Installation

Now that you’re live you’ll want to review the Admin Guide for more information about the ongoing administration of a Dataverse installation.




Setting Up Integrations

Before going live, you might want to consider setting up integrations to make it easier for your users to deposit or explore data. See the Integrations section of the Admin Guide for details.






JVM Options

JVM stands Java Virtual Machine and as a Java application, Glassfish can read JVM options when it is started. A number of JVM options are configured by the installer below is a complete list of the Dataverse-specific JVM options. You can inspect the configured options by running:

./asadmin list-jvm-options | egrep 'dataverse|doi'

When changing values these values with asadmin, you’ll need to delete the old value before adding a new one, like this:

./asadmin delete-jvm-options "-Ddataverse.fqdn=old.example.com"

./asadmin create-jvm-options "-Ddataverse.fqdn=dataverse.example.com"

It’s also possible to change these values by stopping Glassfish, editing glassfish4/glassfish/domains/domain1/config/domain.xml, and restarting Glassfish.


dataverse.fqdn

If the Dataverse server has multiple DNS names, this option specifies the one to be used as the “official” host name. For example, you may want to have dataverse.example.edu, and not the less appealing server-123.socsci.example.edu to appear exclusively in all the registered global identifiers, Data Deposit API records, etc.

The password reset feature requires dataverse.fqdn to be configured.


Do note that whenever the system needs to form a service URL, by default, it will be formed with https:// and port 443. I.e.,

https://{dataverse.fqdn}/

If that does not suit your setup, you can define an additional option, dataverse.siteUrl, explained below.






dataverse.siteUrl


and specify the protocol and port number you would prefer to be used to advertise the URL for your Dataverse.

For example, configured in domain.xml:

<jvm-options>-Ddataverse.fqdn=dataverse.example.edu</jvm-options>

<jvm-options>-Ddataverse.siteUrl=http://${dataverse.fqdn}:8080</jvm-options>






dataverse.files.directory

This is how you configure the path to which files uploaded by users are stored.




dataverse.auth.password-reset-timeout-in-minutes

Users have 60 minutes to change their passwords by default. You can adjust this value here.




dataverse.rserve.host

Configuration for TwoRavens.




dataverse.rserve.port

Configuration for TwoRavens.




dataverse.rserve.user

Configuration for TwoRavens.




dataverse.rserve.tempdir

Configuration for TwoRavens.




dataverse.rserve.password

Configuration for TwoRavens.




dataverse.dropbox.key

Dropbox provides a Chooser app, which is a Javascript component that allows you to upload files to Dataverse from Dropbox. It is an optional configuration setting, which requires you to pass it an app key and configure the :UploadMethods database setting. For more information on setting up your Chooser app, visit https://www.dropbox.com/developers/chooser.

./asadmin create-jvm-options "-Ddataverse.dropbox.key={{YOUR_APP_KEY}}"




dataverse.path.imagemagick.convert

For overriding the default path to the convert binary from ImageMagick (/usr/bin/convert).




dataverse.dataAccess.thumbnail.image.limit

For limiting the size (in bytes) of thumbnail images generated from files.




dataverse.dataAccess.thumbnail.pdf.limit

For limiting the size (in bytes) of thumbnail images generated from files.




doi.baseurlstring

As of this writing, “https://mds.datacite.org” (DataCite) and “https://ezid.cdlib.org” (EZID) are the main valid values.

While the above two options are recommended because they have been tested by the Dataverse team, it is also possible to use a DataCite Client API as a proxy to DataCite. In this case, requests made to the Client API are captured and passed on to DataCite for processing. The application will interact with the DataCite Client API exactly as if it were interacting directly with the DataCite API, with the only difference being the change to the base endpoint URL.

For example, the Australian Data Archive (ADA) successfully uses the Australian National Data Service (ANDS) API (a proxy for DataCite) to mint their DOIs through Dataverse using a doi.baseurlstring value of “https://researchdata.ands.org.au/api/doi/datacite” as documented at https://documentation.ands.org.au/display/DOC/ANDS+DataCite+Client+API . As ADA did for ANDS DOI minting, any DOI provider (and their corresponding DOI configuration parameters) other than DataCite must be tested with Dataverse to establish whether or not it will function properly.

Out of the box, Dataverse is configured to use a test MDS DataCite base URL string. You can delete it like this:

./asadmin delete-jvm-options '-Ddoi.baseurlstring=https\://mds.test.datacite.org'

Then, to switch to production DataCite, you can issue the following command:

./asadmin create-jvm-options '-Ddoi.baseurlstring=https\://mds.datacite.org'

See also these related database settings below:


	:DoiProvider


	:Protocol


	:Authority


	:Shoulder







doi.username

Used in conjuction with doi.baseurlstring.

Once you have a username from your provider, you can enter it like this:

./asadmin create-jvm-options '-Ddoi.username=YOUR_USERNAME_HERE'




doi.password

Used in conjuction with doi.baseurlstring.

Once you have a password from your provider, you can enter it like this:

./asadmin create-jvm-options '-Ddoi.password=YOUR_PASSWORD_HERE'




dataverse.handlenet.admcredfile

If you’re using handles, this JVM setting configures access credentials so your dataverse can talk to your Handle.Net server. This is the private key generated during Handle.Net server installation. Typically the full path is set to handle/svr_1/admpriv.bin. Please refer to Handle.Net’s documentation [http://handle.net/hnr_documentation.html] for more info.




dataverse.handlenet.admprivphrase

This JVM setting is also part of handles configuration. The Handle.Net installer lets you choose whether to encrypt the admcredfile private key or not. If you do encrypt it, this is the pass phrase that it’s encrypted with.




dataverse.handlenet.index

If you want to use different index than the default 300




dataverse.timerServer

This JVM option is only relevant if you plan to run multiple Glassfish servers for redundancy. Only one Glassfish server can act as the dedicated timer server and for details on promoting or demoting a Glassfish server to handle this responsibility, see Dataverse Application Timers.




dataverse.lang.directory

This JVM option is used to configure the path where all the language specific property files are to be stored.  If this option is set then the english property file must be present in the path along with any other language property file.

./asadmin create-jvm-options '-Ddataverse.lang.directory=PATH_LOCATION_HERE'

If this value is not set, by default, a Dataverse installation will read the English language property files from the Java Application.




dataverse.files.hide-schema-dot-org-download-urls

Please note that this setting is experimental.

By default, download URLs to files will be included in Schema.org JSON-LD output. To prevent these URLs from being included in the output, set dataverse.files.hide-schema-dot-org-download-urls to true as in the example below.

./asadmin create-jvm-options '-Ddataverse.files.hide-schema-dot-org-download-urls=true'

Please note that there are other reasons why download URLs may not be included for certain files such as if a guestbook entry is required or if the file is restricted.

For more on Schema.org JSON-LD, see the Metadata Export section of the Admin Guide.






Database Settings

These settings are stored in the setting database table but can be read and modified via the “admin” endpoint of the Native API for easy scripting.

The most commonly used configuration options are listed first.

The pattern you will observe in curl examples below is that an HTTP PUT is used to add or modify a setting. If you perform an HTTP GET (the default when using curl), the output will contain the value of the setting, if it has been set. You can also do a GET of all settings with curl http://localhost:8080/api/admin/settings which you may want to pretty-print by piping the output through a tool such as jq by appending | jq .. If you want to remove a setting, use an HTTP DELETE such as curl -X DELETE http://localhost:8080/api/admin/settings/:GuidesBaseUrl .


:BlockedApiPolicy

Out of the box, all API endpoints are completely open, as mentioned in the section on security above. It is highly recommended that you choose one of the policies below and also configure :BlockedApiEndpoints.


	localhost-only: Allow from localhost.


	unblock-key: Require a key defined in :BlockedApiKey.


	drop: Disallow the blocked endpoints completely.




curl -X PUT -d localhost-only http://localhost:8080/api/admin/settings/:BlockedApiPolicy




:BlockedApiEndpoints

A comma separated list of API endpoints to be blocked. For a production installation, “admin” should be blocked (and perhaps “builtin-users” as well), as mentioned in the section on security above:

curl -X PUT -d "admin,builtin-users" http://localhost:8080/api/admin/settings/:BlockedApiEndpoints

See the API Guide for a list of API endpoints.




:BlockedApiKey

Used in conjunction with the :BlockedApiPolicy being set to unblock-key. When calling blocked APIs, add a query parameter of unblock-key=theKeyYouChose to use the key.

curl -X PUT -d s3kretKey http://localhost:8080/api/admin/settings/:BlockedApiKey




BuiltinUsers.KEY

The key required to create users via API as documented at Native API. Unlike other database settings, this one doesn’t start with a colon.

curl -X PUT -d builtInS3kretKey http://localhost:8080/api/admin/settings/BuiltinUsers.KEY




:SearchApiRequiresToken

In Dataverse 4.7 and lower, the Search API required an API token, but as of Dataverse 4.7.1 this is no longer the case. If you prefer the old behavior of requiring API tokens to use the Search API, set :SearchApiRequiresToken to true.

curl -X PUT -d true http://localhost:8080/api/admin/settings/:SearchApiRequiresToken




:SystemEmail

This is the email address that “system” emails are sent from such as password reset links. Your Dataverse installation will not send mail without this setting in place.

curl -X PUT -d 'LibraScholar SWAT Team <support@librascholar.edu>' http://localhost:8080/api/admin/settings/:SystemEmail

Note that only the email address is required, which you can supply without the < and > signs, but if you include the text, it’s the way to customize the name of your support team, which appears in the “from” address in emails as well as in help text in the UI.

Please note that if you’re having any trouble sending email, you can refer to “Troubleshooting” under Installation.




:HomePageCustomizationFile

See Branding Your Installation above.




:LogoCustomizationFile

See Branding Your Installation above.




:HeaderCustomizationFile

See Branding Your Installation above.




:DisableRootDataverseTheme

See Branding Your Installation above.




:FooterCustomizationFile

See Branding Your Installation above.




:StyleCustomizationFile

See Branding Your Installation above.




:FooterCopyright

By default the footer says “Copyright © [YYYY]” but you can add text after the year, as in the example below.

curl -X PUT -d ", Your Institution" http://localhost:8080/api/admin/settings/:FooterCopyright




:DoiProvider

As of this writing “DataCite” and “EZID” are the only valid options for production installations. Developers are welcome to use “FAKE”. :DoiProvider is only needed if you are using DOI.

curl -X PUT -d DataCite http://localhost:8080/api/admin/settings/:DoiProvider

This setting relates to the :Protocol, :Authority, :Shoulder, and :IdentifierGenerationStyle database settings below as well as the following JVM options:


	doi.baseurlstring


	doi.username


	doi.password







:Protocol

As of this writing “doi” and “hdl” are the only valid option for the protocol for a persistent ID.

curl -X PUT -d doi http://localhost:8080/api/admin/settings/:Protocol




:Authority

Use the authority assigned to you by your DoiProvider or HandleProvider.

Please note that the authority cannot have a slash (“/”) in it.

curl -X PUT -d 10.xxxx http://localhost:8080/api/admin/settings/:Authority




:Shoulder

Out of the box, the DOI shoulder is set to “FK2/” but this is for testing only! When you apply for your DOI namespace, you may have requested a shoulder. The following is only an example and a trailing slash is optional.

curl -X PUT -d "MyShoulder/" http://localhost:8080/api/admin/settings/:Shoulder




:IdentifierGenerationStyle

By default, Dataverse generates a random 6 character string, pre-pended by the Shoulder if set, to use as the identifier
for a Dataset. Set this to sequentialNumber to use sequential numeric values
instead (again pre-pended by the Shoulder if set). (the assumed default setting is randomString).
In addition to this setting, a database sequence must be created in the database.
We provide the script below (downloadable here).
You may need to make some changes to suit your system setup, see the comments for more information:

-- A script for creating a numeric identifier sequence, and an external 
-- stored procedure, for accessing the sequence from inside the application, 
-- in a non-hacky, JPA way. 

-- NOTE:

-- 1. The database user name "dvnapp" is hard-coded here - it may
-- need to be changed to match your database user name;
  
-- 2. In the code below, the sequence starts with 1, but it can be adjusted by
-- changing the MINVALUE as needed. 

CREATE SEQUENCE datasetidentifier_seq
  INCREMENT 1
  MINVALUE 1
  MAXVALUE 9223372036854775807
  START 1
CACHE 1;

ALTER TABLE datasetidentifier_seq OWNER TO "dvnapp";

-- And now create a PostgreSQL FUNCTION, for JPA to
-- access as a NamedStoredProcedure:

CREATE OR REPLACE FUNCTION generateIdentifierAsSequentialNumber(
    OUT identifier int)
  RETURNS int AS
$BODY$
BEGIN
    select nextval('datasetidentifier_seq') into identifier;
END;
$BODY$
  LANGUAGE plpgsql;





Note that the SQL above is Postgres-specific. If necessary, it can be reimplemented
in any other SQL flavor - the standard JPA code in the application simply expects
the database to have a saved function (“stored procedure”) named generateIdentifierAsSequentialNumber
with the single return argument identifier.

For systems using Postgresql 8.4 or older, the procedural language plpgsql should be enabled first.
We have provided an example here.

Please note that :IdentifierGenerationStyle also plays a role for the “identifier” for files. See the section on :DataFilePIDFormat below for more details.




:DataFilePIDFormat

This setting controls the way that the “identifier” component of a file’s persistent identifier (PID) relates to the PID of its “parent” dataset.

By default the identifier for a file is dependent on its parent dataset. For example, if the identifier of a dataset is “TJCLKP”, the identifier for a file within that dataset will consist of the parent dataset’s identifier followed by a slash (“/”), followed by a random 6 character string, yielding “TJCLKP/MLGWJO”. Identifiers in this format are what you should expect if you leave :DataFilePIDFormat undefined or set it to DEPENDENT and have not changed the :IdentifierGenerationStyle setting from its default.

Alternatively, the identifier for File PIDs can be configured to be independent of Dataset PIDs using the setting “INDEPENDENT”. In this case, file PIDs will not contain the PIDs of their parent datasets, and their PIDs will be generated the exact same way that datasets’ PIDs are, based on the :IdentifierGenerationStyle setting described above (random 6 character strings or sequential numbers, pre-pended by any shoulder).

The chart below shows examples from each possible combination of parameters from the two settings. :IdentifierGenerationStyle can be either randomString (the default) or sequentialNumber and :DataFilePIDFormat can be either DEPENDENT (the default) or INDEPENDENT. In the examples below the “identifier” for the dataset is “TJCLKP” for “randomString” and “100001” for “sequentialNumber”.








	
	randomString

	sequentialNumber





	DEPENDENT

	TJCLKP/MLGWJO

	100001/1



	INDEPENDENT

	MLGWJO

	100002






As seen above, in cases where :IdentifierGenerationStyle is set to sequentialNumber and :DataFilePIDFormat is set to DEPENDENT, each file within a dataset will be assigned a number within that dataset starting with “1”.

Otherwise, if :DataFilePIDFormat is set to INDEPENDENT, then each file will be assigned a PID with the next number in the overall sequence, regardless of what dataset it is in. If the file is created after a dataset with the PID 100001, then the file will be assigned the PID 100002. This option is functional, but it is not a recommended use case.

Note that in either case, when using the sequentialNumber option, datasets and files share the same database sequence that was created as part of the setup described in :IdentifierGenerationStyle above.




:FilePIDsEnabled

Toggles publishing of file-based PIDs for the entire installation. By default this setting is absent and Dataverse assumes it to be true.

If you don’t want to register file-based PIDs for your installation, set:

curl -X PUT -d 'false' http://localhost:8080/api/admin/settings/:FilePIDsEnabled

Note: File-level PID registration was added in 4.9 and is required until version 4.9.3.




:ApplicationTermsOfUse

Upload an HTML file containing the Terms of Use to be displayed at sign up. Supported HTML tags are listed under the Dataset + File Management section of the User Guide.

curl -X PUT -d@/tmp/apptou.html http://localhost:8080/api/admin/settings/:ApplicationTermsOfUse

Unfortunately, in most cases, the text file will probably be too big to upload (>1024 characters) due to a bug. A workaround has been posted to https://github.com/IQSS/dataverse/issues/2669




:ApplicationPrivacyPolicyUrl

Specify a URL where users can read your Privacy Policy, linked from the bottom of the page.

curl -X PUT -d https://dataverse.org/best-practices/harvard-dataverse-privacy-policy http://localhost:8080/api/admin/settings/:ApplicationPrivacyPolicyUrl




:ApiTermsOfUse

Specify a URL where users can read your API Terms of Use.
API users can retrieve this URL from the SWORD Service Document or the “info” section of our Native API documentation.

curl -X PUT -d https://dataverse.org/best-practices/harvard-api-tou http://localhost:8080/api/admin/settings/:ApiTermsOfUse




:ExcludeEmailFromExport

Set :ExcludeEmailFromExport to prevent email addresses for dataset contacts from being exposed in XML or JSON representations of dataset metadata. For a list exported formats such as DDI, see the Metadata Export section of the Admin Guide.

curl -X PUT -d true http://localhost:8080/api/admin/settings/:ExcludeEmailFromExport




:NavbarAboutUrl

Set NavbarAboutUrl to a fully-qualified URL which will be used for the “About” link in the navbar.

Note: The “About” link will not appear in the navbar until this option is set.

curl -X PUT -d http://dataverse.example.edu http://localhost:8080/api/admin/settings/:NavbarAboutUrl




:GuidesBaseUrl

Set GuidesBaseUrl to override the default value “http://guides.dataverse.org”. If you are interested in writing your own version of the guides, you may find the Documentation section of the Developer Guide helpful.

curl -X PUT -d http://dataverse.example.edu http://localhost:8080/api/admin/settings/:GuidesBaseUrl




:GuidesVersion

Set :GuidesVersion to override the version number in the URL of guides. For example, rather than http://guides.dataverse.org/en/4.6/user/account.html the version is overriden to http://guides.dataverse.org/en/1234-new-feature/user/account.html in the example below:

curl -X PUT -d 1234-new-feature http://localhost:8080/api/admin/settings/:GuidesVersion




:NavbarSupportUrl

Set :NavbarSupportUrl to a fully-qualified URL which will be used for the “Support” link in the navbar.

Note that this will override the default behaviour for the “Support” menu option, which is to display the dataverse ‘feedback’ dialog.

curl -X PUT -d http://dataverse.example.edu/supportpage.html http://localhost:8080/api/admin/settings/:NavbarSupportUrl




:MetricsUrl

Make the metrics component on the root dataverse a clickable link to a website where you present metrics on your Dataverse installation. This could perhaps be an installation of https://github.com/IQSS/miniverse or any site.

curl -X PUT -d http://metrics.dataverse.example.edu http://localhost:8080/api/admin/settings/:MetricsUrl




:StatusMessageHeader

For dynamically adding an informational header to the top of every page. StatusMessageText must also be set for a message to show. For example, “For testing only…” at the top of https://demo.dataverse.org is set with this:

curl -X PUT -d "For testing only..." http://localhost:8080/api/admin/settings/:StatusMessageHeader

You can make the text clickable and include an additional message in a pop up by setting :StatusMessageText.




:StatusMessageText

Alongside the :StatusMessageHeader you need to add StatusMessageText for the message to show.:

curl -X PUT -d "This appears in a popup." http://localhost:8080/api/admin/settings/:StatusMessageText




:MaxFileUploadSizeInBytes

Set MaxFileUploadSizeInBytes to “2147483648”, for example, to limit the size of files uploaded to 2 GB.

Notes:


	For SWORD, this size is limited by the Java Integer.MAX_VALUE of 2,147,483,647. (see: https://github.com/IQSS/dataverse/issues/2169)


	If the MaxFileUploadSizeInBytes is NOT set, uploads, including SWORD may be of unlimited size.


	For larger file upload sizes, you may need to configure your reverse proxy timeout. If using apache2 (httpd) with Shibboleth, add a timeout to the ProxyPass defined in etc/httpd/conf.d/ssl.conf (which is described in the Shibboleth setup).




curl -X PUT -d 2147483648 http://localhost:8080/api/admin/settings/:MaxFileUploadSizeInBytes




:ZipDownloadLimit

For performance reasons, Dataverse will only create zip files on the fly up to 100 MB but the limit can be increased. Here’s an example of raising the limit to 1 GB:

curl -X PUT -d 1000000000 http://localhost:8080/api/admin/settings/:ZipDownloadLimit




:TabularIngestSizeLimit

Threshold in bytes for limiting whether or not “ingest” it attempted for tabular files (which can be resource intensive). For example, with the below in place, files greater than 2 GB in size will not go through the ingest process:

curl -X PUT -d 2000000000 http://localhost:8080/api/admin/settings/:TabularIngestSizeLimit

(You can set this value to 0 to prevent files from being ingested at all.)

You can override this global setting on a per-format basis for the following formats:


	DTA


	POR


	SAV


	Rdata


	CSV


	XLSX




For example, if you want your installation of Dataverse to not attempt to ingest Rdata files larger that 1 MB, use this setting:

curl -X PUT -d 1000000 http://localhost:8080/api/admin/settings/:TabularIngestSizeLimit:Rdata




:ZipUploadFilesLimit

Limit the number of files in a zip that Dataverse will accept.




:GoogleAnalyticsCode

Set your Google Analytics Tracking ID thusly:

curl -X PUT -d 'trackingID' http://localhost:8080/api/admin/settings/:GoogleAnalyticsCode




:SolrHostColonPort

By default Dataverse will attempt to connect to Solr on port 8983 on localhost. Use this setting to change the hostname or port. You must restart Glassfish after making this change.

curl -X PUT -d localhost:8983 http://localhost:8080/api/admin/settings/:SolrHostColonPort




:SolrFullTextIndexing

Whether or not to index the content of files such as PDFs. The default is false.

curl -X PUT -d true http://localhost:8080/api/admin/settings/:SolrFullTextIndexing




:SolrMaxFileSizeForFullTextIndexing

If :SolrFullTextIndexing is set to true, the content of files of any size will be indexed. To set a limit in bytes for which files to index in this way:

curl -X PUT -d 314572800 http://localhost:8080/api/admin/settings/:SolrMaxFileSizeForFullTextIndexing




:SignUpUrl

The relative path URL to which users will be sent for signup. The default setting is below.

curl -X PUT -d '/dataverseuser.xhtml?editMode=CREATE' http://localhost:8080/api/admin/settings/:SignUpUrl




:TwoRavensUrl

The :TwoRavensUrl option is no longer valid. See TwoRavens and External Tools.




:TwoRavensTabularView

The :TwoRavensTabularView option is no longer valid. See TwoRavens and External Tools.




:GeoconnectCreateEditMaps

Set GeoconnectCreateEditMaps to true to allow the user to create GeoConnect Maps. This boolean effects whether the user sees the map button on the dataset page and if the ingest will create a shape file.

curl -X PUT -d true http://localhost:8080/api/admin/settings/:GeoconnectCreateEditMaps




:GeoconnectViewMaps

Set GeoconnectViewMaps to true to allow a user to view existing maps. This boolean effects whether a user will see the “Explore” button.

curl -X PUT -d true http://localhost:8080/api/admin/settings/:GeoconnectViewMaps




:DatasetPublishPopupCustomText

Set custom text a user will view when publishing a dataset. Note that this text is exposed via the “Info” endpoint of the Native API.

curl -X PUT -d "Deposit License Requirements" http://localhost:8080/api/admin/settings/:DatasetPublishPopupCustomText

If you have a long text string, you can upload it as a file as in the example below.

curl -X PUT --upload-file /tmp/long.txt http://localhost:8080/api/admin/settings/:DatasetPublishPopupCustomText




:DatasetPublishPopupCustomTextOnAllVersions

Set whether a user will see the custom text when publishing all versions of a dataset

curl -X PUT -d true http://localhost:8080/api/admin/settings/:DatasetPublishPopupCustomTextOnAllVersions




:SearchHighlightFragmentSize

Set SearchHighlightFragmentSize to override the default value of 100 from https://wiki.apache.org/solr/HighlightingParameters#hl.fragsize . In practice, a value of “320” seemed to fix the issue at https://github.com/IQSS/dataverse/issues/2191

curl -X PUT -d 320 http://localhost:8080/api/admin/settings/:SearchHighlightFragmentSize




:ScrubMigrationData

Allow for migration of non-conformant data (especially dates) from DVN 3.x to Dataverse 4.




:MinutesUntilConfirmEmailTokenExpires

The duration in minutes before “Confirm Email” URLs expire. The default is 1440 minutes (24 hours).  See also the User Administration section of our Admin Guide.




:DefaultAuthProvider

If you have enabled Shibboleth and/or one or more OAuth providers, you may wish to make one of these authentication providers the default when users visit the Log In page. If unset, this will default to builtin but these valid options (depending if you’ve done the setup described in the Shibboleth or OAuth Login: ORCID, GitHub, Google sections) are:


	builtin


	shib


	orcid


	github


	google




Here is an example of setting the default auth provider back to builtin:

curl -X PUT -d builtin http://localhost:8080/api/admin/settings/:DefaultAuthProvider




:AllowSignUp

Set to false to disallow local accounts to be created. See also the sections on Shibboleth and OAuth Login: ORCID, GitHub, Google.




:PiwikAnalyticsId

Site identifier created in your Piwik instance. Example:

curl -X PUT -d 42 http://localhost:8080/api/admin/settings/:PiwikAnalyticsId




:PiwikAnalyticsHost

Host FQDN or URL of your Piwik instance before the /piwik.php. Examples:

curl -X PUT -d stats.domain.tld http://localhost:8080/api/admin/settings/:PiwikAnalyticsHost

or

curl -X PUT -d hostname.domain.tld/stats http://localhost:8080/api/admin/settings/:PiwikAnalyticsHost




:PiwikAnalyticsTrackerFileName

Filename for the ‘php’ and ‘js’ tracker files used in the Piwik code (piwik.php and piwik.js).
Sometimes these files are renamed in order to prevent ad-blockers (in the browser) to block the Piwik tracking code.
This sets the base name (without dot and extension), if not set it defaults to ‘piwik’.

curl -X PUT -d domainstats http://localhost:8080/api/admin/settings/:PiwikAnalyticsTrackerFileName




:FileFixityChecksumAlgorithm

Dataverse calculates checksums for uploaded files so that users can determine if their file was corrupted via upload or download. This is sometimes called “file fixity”: https://en.wikipedia.org/wiki/File_Fixity

The default checksum algorithm used is MD5 and should be sufficient for establishing file fixity. “SHA-1”, “SHA-256” and “SHA-512” are alternate values for this setting. For example:

curl -X PUT -d 'SHA-512' http://localhost:8080/api/admin/settings/:FileFixityChecksumAlgorithm

The fixity algorithm used on existing files can be changed by a superuser using the API. An optional query parameter (num) can be used to limit the number of updates attempted.
The API call will only update the algorithm and checksum for a file if the existing checksum can be validated against the file.
Statistics concerning the updates are returned in the response to the API call with details in the log.

curl http://localhost:8080/api/admin/updateHashValues/{alg}
curl http://localhost:8080/api/admin/updateHashValues/{alg}?num=1




:PVMinLength

Password policy setting for builtin user accounts: a password’s minimum valid character length. The default is 6.

curl -X PUT -d 6 http://localhost:8080/api/admin/settings/:PVMinLength




:PVMaxLength

Password policy setting for builtin user accounts: a password’s maximum valid character length.

curl -X PUT -d 0 http://localhost:8080/api/admin/settings/:PVMaxLength




:PVNumberOfConsecutiveDigitsAllowed

By default, passwords can contain an unlimited number of digits in a row. However, if your password policy specifies otherwise (e.g. only four digits in a row are allowed), then you can issue the following curl command to set the number of consecutive digits allowed (this example uses 4):

curl -X PUT -d 4 http://localhost:8080/api/admin/settings/:PVNumberOfConsecutiveDigitsAllowed




:PVCharacterRules

Password policy setting for builtinuser accounts: dictates which types of characters can be required in a password. This setting goes hand-in-hand with :PVNumberOfCharacteristics. The default setting contains two rules:


	one letter


	one digit




The default setting above is equivalent to specifying “Alphabetical:1,Digit:1”.

By specifying “UpperCase:1,LowerCase:1,Digit:1,Special:1”, for example, you can put the following four rules in place instead:


	one uppercase letter


	one lowercase letter


	one digit


	one special character




If you have implemented 4 different character rules in this way, you can also optionally increase :PVNumberOfCharacteristics to as high as 4. However, please note that :PVNumberOfCharacteristics cannot be set to a number higher than the number of character rules or you will see the error, “Number of characteristics must be <= to the number of rules”.

Also note that the Alphabetical setting should not be used in tandem with the UpperCase or LowerCase settings. The Alphabetical setting encompasses both of those more specific settings, so using it with them will cause your password policy to be unnecessarily confusing, and potentially easier to bypass.

curl -X PUT -d 'UpperCase:1,LowerCase:1,Digit:1,Special:1' http://localhost:8080/api/admin/settings/:PVCharacterRules

curl -X PUT -d 3 http://localhost:8080/api/admin/settings/:PVNumberOfCharacteristics




:PVNumberOfCharacteristics

Password policy setting for builtin user accounts: the number indicates how many of the character rules defined by :PVCharacterRules are required as part of a password. The default is 2. :PVNumberOfCharacteristics cannot be set to a number higher than the number of rules or you will see the error, “Number of characteristics must be <= to the number of rules”.

curl -X PUT -d 2 http://localhost:8080/api/admin/settings/:PVNumberOfCharacteristics




:PVDictionaries

Password policy setting for builtin user accounts: set a comma separated list of dictionaries containing words that cannot be used in a user password. /usr/share/dict/words is suggested and shown modified below to not contain words 3 letters or less. You are free to choose a different dictionary. By default, no dictionary is checked.

DIR=THE_PATH_YOU_WANT_YOUR_DICTIONARY_TO_RESIDE
sed '/^.\{,3\}$/d' /usr/share/dict/words > $DIR/pwdictionary
curl -X PUT -d "$DIR/pwdictionary" http://localhost:8080/api/admin/settings/:PVDictionaries




:PVGoodStrength

Password policy setting for builtin user accounts: passwords of equal or greater character length than the :PVGoodStrength setting are always valid, regardless of other password constraints.

curl -X PUT -d 20 http://localhost:8080/api/admin/settings/:PVGoodStrength

Recommended setting: 20.




:PVCustomPasswordResetAlertMessage

Changes the default info message displayed when a user is required to change their password on login. The default is:

{0} Reset Password{1} – Our password requirements have changed. Please pick a strong password that matches the criteria below.

Where the {0} and {1} denote surrounding HTML bold tags. It’s recommended to put a single space before your custom message for better appearance (as in the default message above). Including the {0} and {1} to bolden part of your message is optional.

Customize the message using the following curl command’s syntax:

curl -X PUT -d '{0} Action Required:{1} Your current password does not meet all requirements. Please enter a new password meeting the criteria below.' http://localhost:8080/api/admin/settings/:PVCustomPasswordResetAlertMessage




:ShibPassiveLoginEnabled

Set :ShibPassiveLoginEnabled to true to enable passive login for Shibboleth. When this feature is enabled, an additional Javascript file (isPassive.js) will be loaded for every page. It will generate a passive login request to your Shibboleth SP when an anonymous user navigates to the site. A cookie named “_check_is_passive_dv” will be created to keep track of whether or not a passive login request has already been made for the user.

This implementation follows the example on the Shibboleth wiki documentation page for the isPassive feature: https://wiki.shibboleth.net/confluence/display/SHIB2/isPassive

It is recommended that you configure additional error handling for your Service Provider if you enable passive login. A good way of doing this is described in the Shibboleth wiki documentation:


	In your Service Provider 2.x shibboleth2.xml file, add redirectErrors=”#THIS PAGE#” to the Errors element.




You can set the value of “#THIS PAGE#” to the URL of your Dataverse homepage, or any other page on your site that is accessible to anonymous users and will have the isPassive.js file loaded.

curl -X PUT -d true http://localhost:8080/api/admin/settings/:ShibPassiveLoginEnabled




:ComputeBaseUrl

Set the base URL for the “Compute” button for a dataset.

curl -X PUT -d 'https://giji.massopencloud.org/application/dataverse' http://localhost:8080/api/admin/settings/:ComputeBaseUrl




:CloudEnvironmentName

Set the name of the cloud environment you’ve integrated with your Dataverse installation.

curl -X PUT -d 'Massachusetts Open Cloud (MOC)' http://localhost:8080/api/admin/settings/:CloudEnvironmentName




:PublicInstall

Setting an installation to public will remove the ability to restrict data files or datasets. This functionality of Dataverse will be disabled from your installation.

This is useful for specific cases where an installation’s files are stored in public access. Because files stored this way do not obey Dataverse’s file restrictions, users would still be able to access the files even when they’re restricted. In these cases it’s best to use :PublicInstall to disable the feature altogether.

curl -X PUT -d true http://localhost:8080/api/admin/settings/:PublicInstall




:DataCaptureModuleUrl

The URL for your Data Capture Module (DCM) installation. This component is experimental and can be downloaded from https://github.com/sbgrid/data-capture-module .

curl -X PUT -d 'https://dcm.example.edu' http://localhost:8080/api/admin/settings/:DataCaptureModuleUrl




:RepositoryStorageAbstractionLayerUrl

The URL for your Repository Storage Abstraction Layer (RSAL) installation. This component is experimental and can be downloaded from https://github.com/sbgrid/rsal .

curl -X PUT -d 'https://rsal.example.edu' http://localhost:8080/api/admin/settings/:RepositoryStorageAbstractionLayerUrl




:UploadMethods

This setting controls which upload methods are available to users of your installation of Dataverse. The following upload methods are available:


	native/http: Corresponds to “Upload with HTTP via your browser” and APIs that use HTTP (SWORD and native).


	dcm/rsync+ssh: Corresponds to “Upload with rsync+ssh via Data Capture Module (DCM)”. A lot of setup is required, as explained in the Big Data Support section of the Dev Guide.




Out of the box only native/http is enabled and will work without further configuration. To add multiple upload method, separate them using a comma like this:

curl -X PUT -d 'native/http,dcm/rsync+ssh' http://localhost:8080/api/admin/settings/:UploadMethods

You’ll always want at least one upload method, so the easiest way to remove one of them is to simply PUT just the one you want, like this:

curl -X PUT -d 'native/http' http://localhost:8080/api/admin/settings/:UploadMethods




:DownloadMethods

This setting is experimental and related to Repository Storage Abstraction Layer (RSAL).

curl -X PUT -d 'rsal/rsync' http://localhost:8080/api/admin/settings/:DownloadMethods




:GuestbookResponsesPageDisplayLimit

Limit on how many guestbook entries to display on the guestbook-responses page. By default, only the 5000 most recent entries will be shown. Use the standard settings API in order to change the limit. For example, to set it to 10,000, make the following API call:

curl -X PUT -d 10000 http://localhost:8080/api/admin/settings/:GuestbookResponsesPageDisplayLimit




:CustomDatasetSummaryFields

You can replace the default dataset metadata fields that are displayed above files table on the dataset page with a custom list separated by commas using the curl command below.

curl http://localhost:8080/api/admin/settings/:CustomDatasetSummaryFields -X PUT -d 'producer,subtitle,alternativeTitle'

You have to put the datasetFieldType name attribute in the :CustomDatasetSummaryFields setting for this to work.




:AllowApiTokenLookupViaApi

Dataverse 4.8.1 and below allowed API Token lookup via API but for better security this has been disabled by default. Set this to true if you really want the old behavior.

curl -X PUT -d 'true' http://localhost:8080/api/admin/settings/:AllowApiTokenLookupViaApi




:ProvCollectionEnabled

Enable the collection of provenance metadata on Dataverse via the provenance popup.

curl -X PUT -d 'true' http://localhost:8080/api/admin/settings/:ProvCollectionEnabled




:MetricsCacheTimeoutMinutes

Sets how long a cached metrics result is used before re-running the query for a request. This timeout is only applied to some of the metrics that query the current state of the system, previous months queries are cached indefinitely. See Metrics API for more info. The default timeout value is 7 days (10080 minutes).

curl -X PUT -d 10080 http://localhost:8080/api/admin/settings/:MetricsCacheTimeoutMinutes




:Languages

Sets which languages should be available. If there is more than one, a dropdown is displayed
in the header. This should be formated as a JSON array as shown below.

curl http://localhost:8080/api/admin/settings/:Languages -X PUT -d '[{  "locale":"en", "title":"English"},  {  "locale":"fr", "title":"Français"}]'




:InheritParentRoleAssignments

:InheritParentRoleAssignments can be set to a comma-separated list of role aliases or ‘*’ (all) to cause newly created Dataverses to inherit the set of users and/or internal groups who have assignments for those role(s) on the parent Dataverse, i.e. those users/groups will be assigned the same role(s) on the new Dataverse (in addition to the creator of the new Dataverse having an admin role).
This can be helpful in situations where multiple organizations are sharing one Dataverse instance. The default, if ::InheritParentRoleAssignments is not set is for the creator of the new Dataverse to be the only one assigned a role.

curl -X PUT -d 'admin, curator' http://localhost:8080/api/admin/settings/:InheritParentRoleAssignments
or
curl -X PUT -d '*' http://localhost:8080/api/admin/settings/:InheritParentRoleAssignments









          

      

      

    





  

    
      
          
            
  
Upgrading

When upgrading within Dataverse 4.x, you will need to follow the upgrade instructions for each intermediate version.

Upgrades always involve deploying the latest war file but may also include running SQL scripts and updating the schema used by Solr.

Please consult the release notes associated with each release at https://github.com/IQSS/dataverse/releases for more information.

Upgrading from DVN 3.x is actually a migration due to the many changes. Migration scripts have been checked into the source tree but as of this writing it is expected that people will require assistance running them. Please reach out per the Introduction section.





          

      

      

    





  

    
      
          
            
  
TwoRavens

TwoRavens is a web application for tabular data exploration and statistical analysis.
It can be integrated with Dataverse, as an optional component.  While TwoRavens was originally created at IQSS, its developers have since left the organization. Plans
for the future of the Dataverse/TwoRavens collaboration are still being worked out. As
such, support for TwoRavens is somewhat limited at the
moment (as of Spring of 2017).

Any questions regarding the features of TwoRavens, bug reports and
such, should be addressed directly to the developers of the
application.  The TwoRavens GitHub repository [https://github.com/IQSS/TwoRavens] and the TwoRavens project page [http://2ra.vn/community/index.html] are good places to start.

For now, the Dataverse project will continue providing
installation and integration support. We have created a new (as
of Dataverse v.4.6.1) version of the installer scripts and updated this guide. We have tried to improve and simplify the
installation process, particularly the difficult process of installing
correct versions of the required third party R packages.

Note that the installation process below supercedes the basic R
setup described in the “Prerequisites” portion of the Installation
Guide. Meaning that once completed, it installs everything needed to
run TwoRavens, PLUS all the libraries and components required to
ingest RData files, export as RData, and use Data Explorer.

Please be warned:


	This process may still require some system administration skills.


	The guide below is very Linux-specific. This process has been tested
on RedHat/CentOS servers only. In some ways it may actually be
easier to get it all installed on MacOS X (because
MacOS X versions of third party R packages are available
pre-compiled), or even on Windows. But it hasn’t been attempted, and
is not supported by the Dataverse team.




In addition to the TwoRavens web application proper, several required
components need to be installed and configured. This includes R,
rApache and a collection of required third-party R packages. The
installation steps for these components are described in the
individual sections of the document below.


Contents:


	0. Overview


	1. Prerequisites


	a. httpd (Apache):


	b. R:


	c. rApache:


	d. Install the build environment for R:






	2. Install Extra R Packages


	3. Install the TwoRavens Application


	a. download and unzip the application


	b. Rename the resulting directory “dataexplore” …


	c. run the installer


	d. Version conflict check  (preprocess.R)


	e. Enable TwoRavens Button in Dataverse


	f. Perform a quick test of TwoRavens functionality






	4. Appendix


	I. Ports configuration discussion


	II. What the r-setup.sh script does:


	III. What the install.pl script does:











0. Overview

TwoRavens is itself a compact JavaScript application that runs on the user’s
browser. These JavaScript files, and the accompanying HTML, CSS, etc. files
are served by an HTTP server (Apache) as static objects.

The statistical calculations are performed by R programs that run on the server.
rApache [http://rapache.net/] is used as the web front end for R on the server, so
that the browser application can talk to R over HTTP.

See the “Advanced Installation” section of the Preparation section for an example of running various components on more than one server.

TwoRavens will need to obtain some tabular-data-specific metadata from
Dataverse – the DDI fragment that describes the variables and some pre-processed
summary statistics for the data vectors. In order to produce the latter, the Dataverse
application also needs to be able to execute some R code on the server. Instead of
rApache, Dataverse uses Rserve [https://rforge.net/Rserve/] to
communicate to R. Rserve is installed as a “contributor” R package. It runs as a
daemon process on the server, accepting network connections on a dedicated port.
Dataverse project supplies an init.d-style startup file for the
daemon. The R setup in step 2. will set it up so that the daemon gets started
automatically when the system boots.

When a user requests to run
a statistical model on a data file, TwoRavens will instruct the R code on the
server to download the file directly from the Dataverse application. Access
URLs need to be configured for this to work properly (this is done by the TwoRavens
installer script in step 3.)

If you install all components on a single server and front Glassfish with Apache
(see “Network Ports” under the Configuration section), the component and
data flow diagram might looks something like this:

[image: tworavens_components]

In addition to Rserve, there are 14 more R library packages that the TwoRavens R
code requires in order to run. These in turn require 30 more as their own dependencies,
so a total of 45 packages must be installed. “Installed” in the
context of an R package means R must download the source code from the CRAN [https://cran.r-project.org/] code repository and compile it locally. This
historically has been the trickiest, least stable part of the installation process,
since the packages in question are being constantly (and independently) developed.
This means that every time you attempt to install these packages, you are building
from potentially different versions of the source code. An incompatibility introduced
between any two of the packages can result in a failure to install. In this release
we have attempted to resolve this by installing the specific  versions of the R
packages that have been proven to work together. If you have attempted to
install TwoRavens in the past, and it didn’t work, please see the part of
section 1.b. where we explain how to completely erase all the previously
built packages.




1. Prerequisites


a. httpd (Apache):

It’s probably installed already, but if not:

yum install httpd

This rApache configuration does not work with SELinux. Execute the following commands
to disable SELinux:

setenforce permissive

getenforce

(Note: If you can get rApache to work with SELinux, we encourage you to make a pull request! Please see the SELinux section of the Developer Guide to get started.)

If you choose to serve TwoRavens and run rApache under https, a “real” signed certificate (as opposed to self-signed) is recommended.

For security reasons, directory listing needs to be disabled on the web documents folder served by Apache:

In the main Apache configuration file (/etc/httpd/conf/httpd.conf in the default setup), find the section that configures your web directory. For example, if the DocumentRoot, defined elsewhere in the file, is set to the default "/var/www/html", the opening line of the section will look like this:

<Directory "/var/www/html">

Find the Options line in that section, and make sure that it doesn’t contain the Indexes statement.
For example, if the options line in your configuration is

Options Indexes FollowSymLinks

change it to

Options FollowSymLinks




b. R:

The simplest way to install R on RHEL/CentOS systems is with yum, using the EPEL repository:

yum install epel-release
yum install R-core R-core-devel





Both EPEL6 and EPEL7 currently provide R 3.5, which has been tested and appears to work well. R 3.4, offered by EPEL until also works well. We recommend using the currently available EPEL version for all the new installations. But if you already have a working R 3.4 installation from EPEL and you don’t have a specific need to upgrade, you may lock that version in place using the yum-versionlock yum plugin, or simply add this line to the “epel” section of /etc/yum.repos.d/epel.repo:

exclude=R-*,openblas-*,libRmath*





RHEL users may need to log in to their organization’s respective RHN interface, find the particular machine in question and:


	click on “Subscribed Channels: Alter Channel Subscriptions”


	enable EPEL, Server Extras, Server Optional




If you are upgrading an existing installation of TwoRavens, or if you have attempted to
install it in the past and it didn’t work, we strongly recommend reinstalling
R completely, erasing all the extra R packages that may have been already built.

Uninstall R:

yum erase R-core R-core-devel





Wipe clean any R packages that were left behind:

rm -rf /usr/lib64/R/library/*
rm -rf /usr/share/R/library/*





… then re-install R with yum install




c. rApache:

We maintain the following rpms of rApache, built for the following version of RedHat/CentOS distribution:

For RHEL/CentOS 6 and R 3.4, download rapache-1.2.6-rpm0.x86_64.rpm and install it with:

yum install rapache-1.2.6-rpm0.x86_64.rpm





For RHEL/CentOS 6 and R 3.5, download rapache-1.2.9_R-3.5-RH6.x86_64.rpm and install it with:

yum install rapache-1.2.9_R-3.5-RH6.x86_64.rpm





If you are using RHEL/CentOS 7 and R 3.4, download rapache-1.2.7-rpm0.x86_64.rpm and install it with:

yum install apache-1.2.7-rpm0.x86_64.rpm





If you are using RHEL/CentOS 7 in combination with R 3.5, download rapache-1.2.9_R-3.5.x86_64.rpm and install it with:

yum install rapache-1.2.9_R-3.5.x86_64.rpm





Please note:
The rpms above cannot be guaranteed to work on your
system. You may have a collection of system libraries installed on
your system that will create a version conflict. If that’s the case,
or if you are trying to install on an operating system that’s listed
above, do not despair: simply build rApache from source [http://rapache.net/downloads.html] . Make sure to build with
the R that’s the same version you are planning on using.




d. Install the build environment for R:

Once again, extra R packages will need to be built from sources. Make sure you have the standard GNU compilers installed: gcc, gcc-c++ and gcc-gfortran.

One of the required packages needed /bin/ed. The R package build script needs /usr/bin/wget. If these are missing, the rpms can be installed with:

yum install ed wget





Depending on how your system was originally set up, you may end up needing to install some other missing rpms. We’ll explain how to troubleshoot compiler errors caused by missing libraries and/or executables.






2. Install Extra R Packages

We provide a shell script (r-setup.sh) that will try to install all the needed packages. Note: the script is now part of the TwoRavens distribution (it used to be in the Dataverse source tree).

The script will attempt to download the packages from CRAN (or a mirror), so the system must have access to the Internet.

In order to run the script:

Download the current snapshot of the “dataverse-distribution” branch
of TwoRavens from github:
https://github.com/IQSS/TwoRavens/archive/dataverse-distribution.zip.
Once again, it is important that you download the
“dataverse-distribution” branch, and NOT the master distribution!
Unpack the zip file, then run the script:

unzip dataverse-distribution.zip
cd TwoRavens-dataverse-distribution/r-setup
chmod +x r-setup.sh
./r-setup.sh





See the section II. of the Appendix for trouble-shooting tips.

For the Rserve package the setup script will also create a system user
rserve, and install the startup script for the
daemon (/etc/init.d/rserve).  The script will skip this part, if
this has already been done on this system (i.e., it should be safe to
run it repeatedly).

Note that the setup will set the Rserve password to “rserve”.
Rserve daemon runs under a non-privileged user id, and there appears to be a
very limited potential for security damage through unauthorized access. It is however
still a good idea to change the password. The password is specified in /etc/Rserv.pwd.
Please see Rserve documentation [https://rforge.net/Rserve/doc.html] for more
information on password encryption and access security.

Make sure the rserve password is correctly specified in the domain.xml of your Dataverse:

<jvm-options>-Ddataverse.rserve.password=...</jvm-options>








3. Install the TwoRavens Application


a. download and unzip the application

(though you may have already done so, in step 2. above - see the instructions there).




b. Rename the resulting directory “dataexplore” …

…and place it in the web root directory of your apache server. We’ll assume /var/www/html/dataexplore in the examples below:

mv TwoRavens-dataverse-distribution /var/www/html/dataexplore








c. run the installer

A scripted, interactive installer is provided at the top level of the TwoRavens
distribution.

The installer will ask you to provide the following:








	Setting

	default

	Comment





	TwoRavens directory

	/var/www/html/dataexplore

	File directory where TwoRavens is installed.



	Apache config dir.

	/etc/httpd

	rApache config file for TwoRavens will be placed under conf.d/ there.



	Apache web dir.

	/var/www/html

	


	rApache/TwoRavens URL

	http://{your hostname}:80

	URL of the Apache server hosting TwoRavens and rApache.



	Dataverse URL

	http://{your hostname}:8080

	URL of the Dataverse that integrates with this TwoRavens installation.






Please note the default values above. The installer assumes


	that you are running both the Dataverse and TwoRavens/rApache on the same host;


	the default ports for Apache (80) and Glassfish that is serving your Dataverse (8080);


	http (not https!) for both .




This configuration is recommended if you are simply trying out/testing Dataverse
and TwoRavens. Accept all the defaults, and you should have a working installation
in no time.

However, if you are planning to use this installation to actually serve data to
users, you’ll most likely want to run under HTTPS. Please refer to the discussion
in the Appendix, I. for more information on setting it up. Configuring HTTPS
takes a little extra work. But note that the TwoRavens configuration
can actually end up being simpler. If you use our recommended configuration for
HTTPS (described in the Appendix), both the “TwoRavens URL” and “Dataverse URL”
will be the same: https://{your hostname}.

Run the installer as:

cd /var/www/html/dataexplore
chmod +x install.pl
./install.pl





Once everything is installed and configured, the installer script will print out a confirmation message with the URL of the TwoRavens application. For example:

The application URL is https://server.dataverse.edu/dataexplore/gui.html








d. Version conflict check  (preprocess.R)

One of the R files in the TwoRavens distribution, rook/preprocess/preprocess.R is used by both TwoRavens and
Dataverse. Dataverse application maintains its own copy of the file, <DOMAIN DIRECTORY>/applications/dataverse-<VERSION>/WEB-INF/classes/edu/harvard/iq/dataverse/rserve/scripts/preprocess.R.
(Why not share the file from the same location? Because the two applications
can potentially be installed on 2 different servers).
Compare the two files. It is important that the two copies are identical.

If different:


	the TwoRavens version wins. Meaning, you need to copy the version supplied with this TwoRavens distribution and overwrite the Glassfish version (above); then restart Glassfish.


	unless this is a brand new Dataverse installation, it may have cached summary statistics fragments that were produced with the older version of this R code. You must remove all such cached files:

cd <DATAVERSE FILES DIRECTORY>
find . -name '*.prep' | while read file; do /bin/rm $file; done









(Yes, this is a HACK! We are working on finding a better way to ensure this compatibility between
TwoRavens and Dataverse!)




e. Enable TwoRavens Button in Dataverse

Now that you have installed TwoRavens, you can make it available to your users by adding it an “external tool” for your Dataverse installation. (For more on external tools in general, see the External Tools section.)

First, download twoRavens.json as a starting point and edit toolUrl in that external tool manifest file to be the URL where you want TwoRavens to run. This is the URL reported by the installer script (as in the example at the end of step c., above).

Once you have made your edits, make the tool available within Dataverse with the following curl command (assuming twoRavens.json is in your current working directory):

curl -X POST -H 'Content-type: application/json' --upload-file twoRavens.json http://localhost:8080/api/admin/externalTools

Once enabled, an “Explore” dropdown will appear next to ingested tabular data files a “TwoRavens” button; clicking it will redirect
the user to the instance of TwoRavens, initialized with the data variables from the selected file.




f. Perform a quick test of TwoRavens functionality

Ingest the dummy data file 50by1000.dta (supplied in the Dataverse source tree in
dataverse/scripts/search/data/tabular). If successfully ingested as tabular data,
the file should appear on the Dataset page as follows:

[image: tworavens_test_file_ingested]

If the file does NOT appear as Tabular Data - if it is shown as Stata/dta,
and no tabular attributes - the numbers of Variables and Observations and the UNF -
are being displayed, try to refresh the page a couple of times. If that doesn’t
change the view to Tabular, it likely means that something went very wrong with the
tabular ingest. Consult the Glassfish server log for any error messages that may
explain the failure.

If the file is showing as Tabular Data, but the Explore button isn’t present,
double-check that the steps in e., above, were correctly performed.

Otherwise, click on the Explore button. This will open TwoRavens in a new browser window.
If the application initializes successfully, you should see the “data pebbles” representing
the first 3 variables in the file:

[image: tworavens_test_init]

If instead TwoRavens opens with an empty view - no variables listed on the left, and/or no “data pebbles” in the middle panel, we’ll provide some diagnostics tips further below.

Otherwise, mouse over var1, and click on Dep Var, selecting the variable as “dependent”:

[image: tworavens_test_select_var]

Then select ls from the list of models on the right:

[image: tworavens_test_select_model]

Then click the Estimate button, above. If the model is successfully executed,
the results will appear in a new popup panel, with some generated graph images, as shown below:

[image: tworavens_test_output]

Troubleshooting:

If TwoRavens fails to initialize properly:

Symptom: instead of the “data pebbles” display shown in the second image, above, you are getting an empty view:

[image: tworavens_test_empty]

A very likely cause of this condition is TwoRavens not being able to obtain the metadata describing the variables from your Dataverse.
Specifically, the “preprocessed summary statistics”.

To diagnose: note the value of the dfId URL parameter in the view above.
Try to request the preprocessed fragment by going to the API end point directly:

<YOUR DATAVERSE URL>/api/access/datafile/<FILE ID>?format=prep





Where the <FILE ID> is the value of the dfId parameter from the previous view.
You should get the output that looks like this:

{"dataset":{"private":false},"variables":{"var1":{"plottype":"bar","plotvalues":{"1":100,"2":100,"3":100,"4":100,"5":100,"6":100,"7":100,"8":100,"9":100,"10":100},"varnamesSumStat":"var1","median":5.5,"mean":5.5,"mode":"1","max":10,"min":1,"invalid":0,"valid":1000,"sd":2.87371854193452,"uniques":10,"herfindahl":0.1,"freqmode":100,"fewest":"1","mid":"1","freqfewest":"100","freqmid":"100","numchar":"numeric","nature":"ordinal","binary":"no","interval":"discrete","varnamesTypes":"var1","defaultInterval":"discrete","defaultNumchar":"numeric","defaultNature":"ordinal","defaultBinary":"no"},"var3":{"plottype":"bar","plotvalues":
...





If you are getting an error message instead, this is likely an Rserve connection problem.
Consult the Glassfish server log for any Rserve-related “connection refused” messages.
See if Rserve is running, and start it with service rserve start, if necessary.
Check if the Rserve host name, username and password in the Glassfish configuration match
the actual Rserve configuration. (this is discussed in the section 2. of the guide).
Correct this, if necessary, then try again.

If you ARE getting JSON output, but the TwoRavens view is still broken:


	Look closely at the very beginning of the JSON fragment. Does it have the {"private":false} entry, as shown in the example above? If not, this likely an R code version mismatch, described in section 3.d., above. Correct the problem as described there, then try again.


	If the JSON looks exactly as the fragment above, yet still no data pebbles - enable the JavaScript error console in the TwoRavens window, and try again. Look for any error messages; and, specifically, for any URLs that TwoRavens is failing to access. Look for the debugging entry that shows TwoRavens attempting to download the format=prep fragment. Does the URL have the correct host name, port and/or the protocol (http vs. https)? If not, re-run the installer, specifying the correct Dataverse URL, and try again.




Symptom: the variables view is initialized properly, but no model output appears when you click Estimate, with or without error messages.


	Make sure you properly selected the dependent variable (var1) and the model (ls).


	Consult the Apache error log files (error_log and/or ssl_error_log, in /var/log/httpd) for any error messages. Possible error condition may include: missing R packages (double-check that the R setup, in step 2. completed without errors); selinux (“Secure Linux”) errors related to the rApache shared libraries, or directory permissions (disable Selinux, as described in 1.a.)









4. Appendix


I. Ports configuration discussion

By default, Glassfish will install itself on ports 8080 and 8181 (for
HTTP and HTTPS, respectively). Apache will install itself on port 80
(the default port for HTTP). Under this configuration, your Dataverse will
be accessible at http://{your host}:8080, and rApache at
http://{your host}/. The TwoRavens installer, above, will default to these
values (and assume you are running both the Dataverse and TwoRavens/rApache on
the same host).

This configuration is the easiest to set up if you are simply
trying out/testing the Dataverse and TwoRavens integration. Accept all the
defaults, and you should have a working installation in no
time. However, if you are planning to use this installation to
actually serve data to real users, you will most likely want to run your Dataverse
on a standard port; and to use HTTPS. It is definitely possible to configure
Glassfish to serve the application under HTTPS on port 443. However, we
do not recommend this setup! For at least 2 reasons: 1. Running Glassfish on
port 443 will require you to run it as root user; which should be avoided,
if possible, for reasons of security. Also, 2) installing SSL certificates under
Glassfish is unnecessarily complicated. The alternative configuration that
we recommend is to “hide” your Glassfish behind Apache. In this setup Apache
serves as the HTTPS front running on port 443, proxying the traffic to
Glassfish using mod_proxy_ajp; and Glassfish is running as
an non-privileged user on a high port that’s not accessible from the outside.
Unlike Glassfish, Apache has a mechanism for running on a privileged port (in
this case, 443) as a non-privileged user. It is possible to use this
configuration, and have this Apache instance serve TwoRavens and rApache too,
all on the same server. Please see “Network Ports” under the Configuration
section, and the Shibboleth section of the Installation Guide for more
information and configuration instructions.




II. What the r-setup.sh script does:

The script uses the list of 45 R library packages and specified
package versions, supplied in TwoRavens/r-setup/package-versions.txt to
replicate the library environment that has been proven to work on the Dataverse
servers.

If any packages fail to build, the script will alert the user.

For every package, the (potentially verbose) output of the build process is saved in
its own file, RINSTALL.{PACKAGE NAME}.LOG. So if, for example, the package
Zelig fails to install, the log file RINSTALL.Zelig.LOG should
be consulted for any error messages that may explain the reason for the failure;
such as a missing library, or a missing compiler, etc. Be aware that diagnosing
compiler errors will require at least some programming and/or system administration
skills.




III. What the install.pl script does:

The steps below are performed by the install.pl script. Provided for reference only!
The instruction below could be used to configure it all by hand, if necessary, or
to verify that the installer has done it correctly.
Once again: normally you would NOT need to individually perform the steps below!

TwoRavens is distributed with a few hard-coded host and directory names. So these
need to be replaced with  the values specific to your system.

In the file /var/www/html/dataexplore/app_ddi.js the following 3 lines need to be
edited:


	var production=false;

changed to true;



	hostname="localhost:8080";

changed to point to the dataverse app, from which TwoRavens will be obtaining the metadata and data files. (don’t forget to change 8080 to the correct port number!)



	var rappURL = "http://0.0.0.0:8000/custom/";

changed to the URL of your rApache server, i.e.

"http(s)://<rapacheserver>:<rapacheport>/custom/";





In dataexplore/rook the following files need to be edited:

rookdata.R, rookzelig.R, rooksubset.R, rooktransform.R, rookselector.R, rooksource.R

replacing every instance of production<-FALSE line with production<-TRUE.

(yeah, that’s why we provide that installer script…)

In dataexplore/rook/rooksource.R the following line:

setwd("/usr/local/glassfish4/glassfish/domains/domain1/docroot/dataexplore/rook")

needs to be changed to:

setwd("/var/www/html/dataexplore/rook")

(or your dataexplore directory, if different from the above)

In dataexplore/rook/rookutils.R the following lines need to be edited:

url <- paste("https://beta.dataverse.org/custom/preprocess_dir/preprocessSubset_",sessionid,".txt",sep="")

and

imageVector[[qicount]]<<-paste("https://beta.dataverse.org/custom/pic_dir/", mysessionid,"_",mymodelcount,qicount,".png", sep = "")

changing the URL to reflect the correct location of your rApache instance. make sure that the protocol (http vs. https) and the port number are correct too, not just the host name!

Next, in order to configure rApache to serve several TwoRavens “mini-apps”,

the installer creates the file tworavens-rapache.conf in the Apache’s /etc/httpd/conf.d directory with the following configuration:

RSourceOnStartup "/var/www/html/dataexplore/rook/rooksource.R"
<Location /custom/zeligapp>
   SetHandler r-handler
   RFileEval /var/www/html/dataexplore/rook/rookzelig.R:Rook::Server$call(zelig.app)
</Location>
<Location /custom/subsetapp>
   SetHandler r-handler
   RFileEval /var/www/html/dataexplore/rook/rooksubset.R:Rook::Server$call(subset.app)
</Location>
<Location /custom/transformapp>
   SetHandler r-handler
   RFileEval /var/www/html/dataexplore/rook/rooktransform.R:Rook::Server$call(transform.app)
</Location>
<Location /custom/dataapp>
   SetHandler r-handler
   RFileEval /var/www/html/dataexplore/rook/rookdata.R:Rook::Server$call(data.app)
</Location>





The following directories are created by the installer to store various output files produced by TwoRavens:

mkdir --parents /var/www/html/custom/pic_dir

mkdir --parents /var/www/html/custom/preprocess_dir

mkdir --parents /var/www/html/custom/log_dir





The ownership of the TwoRavens directories is changed to user apache:

chown -R apache.apache /var/www/html/custom

chown -R apache /var/www/html/dataexplore





Finally, the installer restarts Apache, for all the changes to take effect:

service httpd restart









          

      

      

    





  

    
      
          
            
  
Geoconnect

Geoconnect works as a middle layer, allowing geospatial data files in Dataverse to be visualized with Harvard WorldMap.

To understand the feature from the user perspective, see the WorldMap: Geospatial Data Exploration section of the User Guide.

As of this writing, the README at https://github.com/IQSS/geoconnect recommends not installing Geoconnect at this time due to an ongoing rewrite of the WorldMap code. If you are not deterred by this, read on!

To set up a Geoconnect development environment, you can follow the steps outlined in the local_setup.md [https://github.com/IQSS/geoconnect/blob/master/local_setup.md] guide. Although those instructions are for a local development setup, they may assist in installing Geoconnect in your production environment. See also “Geoconnect” under the Development Environment section of the Developer Guide.

Harvard Dataverse runs Geoconnect on Heroku. To make use of Heroku, you will need a Heroku account, as well as a few other prerequisites. Follow the instructions outlined in the heroku_setup.md [https://github.com/IQSS/geoconnect/blob/master/heroku_setup.md] guide. The heroku.py [https://github.com/IQSS/geoconnect/blob/master/geoconnect/settings/heroku.py] settings file may also be adapted for other environments. Please note, for the production environment, remember to set DEBUG=False.

See also the Geoconnect and WorldMap section of the Admin Guide.





          

      

      

    





  

    
      
          
            
  
Shibboleth


Contents:


	Introduction


	Installation


	System Requirements


	Install Apache


	Install Shibboleth


	Enable Shibboleth Yum Repo


	Install Shibboleth Via Yum










	Configure Glassfish


	Apply GRIZZLY-1787 Patch


	Glassfish HTTP and HTTPS ports


	AJP


	SSLEngine Warning Workaround






	Configure Apache


	Enforce HTTPS


	Edit Apache ssl.conf File






	Configure Shibboleth


	shibboleth2.xml


	Specific Identity Provider(s)


	Identity Federation






	Shibboleth Attributes


	attribute-map.xml






	Disable or Reconfigure SELinux


	Disable SELinux


	Reconfigure SELinux to Accommodate Shibboleth


	Put Type Enforcement (TE) File in misc directory


	Navigate to misc directory


	Run checkmodule


	Run semodule_package


	Run semodule










	Restart Apache and Shibboleth


	Configure Apache and shibd to Start at Boot


	Verify DiscoFeed and Metadata URLs


	Add the Shibboleth Authentication Provider to Dataverse


	Exchange Metadata with Your Identity Provider


	Backup sp-cert.pem and sp-key.pem Files


	Debugging


	Converting Accounts


	Converting Local Users to Shibboleth


	Converting Shibboleth Users to Local






	Institution-Wide Shibboleth Groups







Introduction

By configuring and enabling Shibboleth support in Dataverse, your users will be able to log in using the identity system managed by their institution (“single sign on”, or at least “single password”) rather than having to create yet another password local to your Dataverse installation. Typically, users know their login system by some sort of internal branding such as “HarvardKey” or “Touchstone” (MIT) but within the Dataverse application, the Shibboleth feature is known as “Institutional Log In” as explained to end users in the Account Creation + Management section of the User Guide.

Shibboleth is an implementation of the Security Assertion Markup Language (SAML) [https://en.wikipedia.org/wiki/Security_Assertion_Markup_Language] protocol which is similar in spirit to systems used by many webapps that allow you to log in via Google, Facebook, or Twitter.

Shibboleth can be compared and contrasted with OAuth2, which you can read about in the OAuth Login: ORCID, GitHub, Google section.




Installation

We assume you’ve already gone through a basic installation as described in the Installation section and that you’ve paid particular attention to the “Auth Modes: Local vs. Remote vs. Both” explanation in the Configuration section. You’re going to give Shibboleth a whirl. Let’s get started.


System Requirements

Support for Shibboleth in Dataverse is built on the popular “mod_shib” Apache module, “shibd” daemon [https://shibboleth.net/products/service-provider.html], and the Embedded Discovery Service (EDS) [https://shibboleth.net/products/embedded-discovery-service.html] Javascript library, all of which are distributed by the Shibboleth Consortium [https://shibboleth.net]. EDS is bundled with Dataverse, but mod_shib and shibd must be installed and configured per below.

Only Red Hat Enterprise Linux (RHEL) and derivatives such as CentOS have been tested (x86_64 versions) by the Dataverse team. See https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPLinuxInstall for details and note that (according to that page) as of this writing Ubuntu and Debian are not offically supported by the Shibboleth project.




Install Apache

We will be “fronting” Glassfish with Apache so that we can make use of the mod_shib Apache module. We will also make use of the mod_proxy_ajp module built in to Apache.

We include the mod_ssl package to enforce HTTPS per below.

yum install httpd mod_ssl




Install Shibboleth

Installing Shibboleth will give us both the shibd service and the mod_shib Apache module.


Enable Shibboleth Yum Repo

This yum repo is recommended at https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPLinuxRPMInstall

cd /etc/yum.repos.d

If you are running el7 (RHEL/CentOS 7):

wget http://download.opensuse.org/repositories/security:/shibboleth/CentOS_7/security:shibboleth.repo

If you are running el6 (RHEL/CentOS 6):

wget http://download.opensuse.org/repositories/security:/shibboleth/CentOS_CentOS-6/security:shibboleth.repo




Install Shibboleth Via Yum

yum install shibboleth-2.6.1 shibboleth-embedded-ds-2.6.1








Configure Glassfish


Apply GRIZZLY-1787 Patch

In order for the Dataverse “download as zip” feature to work well with large files without causing OutOfMemoryError problems on Glassfish 4.1 when fronted with Apache, you should stop Glassfish, with ./asadmin stop-domain domain1, make a backup of glassfish4/glassfish/modules/glassfish-grizzly-extra-all.jar, replace it with a patched version of glassfish-grizzly-extra-all.jar downloaded from here (the md5 is in the README), and start Glassfish again with ./asadmin start-domain domain1.

For more background on the patch, please see https://java.net/jira/browse/GRIZZLY-1787 and https://github.com/IQSS/dataverse/issues/2180 and https://github.com/payara/Payara/issues/350

This problem has been reported to Glassfish at https://java.net/projects/glassfish/lists/users/archive/2015-07/message/1 and while Glassfish 4.1.1 includes a new enough version of Grizzly to fix the bug, other complicating factors prevent its adoption (look for “Glassfish 4.1.1” in the Prerequisites section for details on why it is not recommended).




Glassfish HTTP and HTTPS ports

Apache will be listening on ports 80 and 443 so we need to make sure Glassfish isn’t using them. If you’ve been changing the default ports used by Glassfish per the Configuration section, revert the Glassfish HTTP service to listen on 8080, the default port:

./asadmin set server-config.network-config.network-listeners.network-listener.http-listener-1.port=8080

Likewise, if necessary, revert the Glassfish HTTPS service to listen on port 8181:

./asadmin set server-config.network-config.network-listeners.network-listener.http-listener-2.port=8181




AJP

A jk-connector network listener should have already been set up when you ran the installer mentioned in the Installation section, but for reference, here is the command that is used:

./asadmin create-network-listener --protocol http-listener-1 --listenerport 8009 --jkenabled true jk-connector

You can verify this with ./asadmin list-network-listeners.

This enables the AJP protocol [http://en.wikipedia.org/wiki/Apache_JServ_Protocol] used in Apache configuration files below.




SSLEngine Warning Workaround

When fronting Glassfish with Apache and using the jk-connector (AJP, mod_proxy_ajp), in your Glassfish server.log you can expect to see “WARNING … org.glassfish.grizzly.http.server.util.RequestUtils … jk-connector … Unable to populate SSL attributes java.lang.IllegalStateException: SSLEngine is null”.

To hide these warnings, run ./asadmin set-log-levels org.glassfish.grizzly.http.server.util.RequestUtils=SEVERE so that the WARNING level is hidden as recommended at https://java.net/jira/browse/GLASSFISH-20694 and https://github.com/IQSS/dataverse/issues/643#issuecomment-49654847






Configure Apache


Enforce HTTPS

To prevent attacks such as FireSheep [http://en.wikipedia.org/wiki/Firesheep], HTTPS should be enforced. https://wiki.apache.org/httpd/RewriteHTTPToHTTPS provides a good method. You could copy and paste that those “rewrite rule” lines into Apache’s main config file at /etc/httpd/conf/httpd.conf but using Apache’s “virtual hosts” feature is recommended so that you can leave the main configuration file alone and drop a host-specific file into place.

Below is an example of how “rewrite rule” lines look within a VirtualHost block. Download a sample file , edit it to substitute your own hostname under ServerName, and place it at /etc/httpd/conf.d/dataverse.example.edu.conf or a filename that matches your hostname. The file must be in /etc/httpd/conf.d and must end in “.conf” to be included in Apache’s configuration.

<VirtualHost *:80>

ServerName dataverse.example.edu

# From https://wiki.apache.org/httpd/RewriteHTTPToHTTPS

RewriteEngine On
# This will enable the Rewrite capabilities

RewriteCond %{HTTPS} !=on
# This checks to make sure the connection is not already HTTPS

RewriteRule ^/?(.*) https://%{SERVER_NAME}/$1 [R,L]
# This rule will redirect users from their original location, to the same location but using HTTPS.
# i.e.  http://www.example.com/foo/ to https://www.example.com/foo/
# The leading slash is made optional so that this will work either in httpd.conf
# or .htaccess context

</VirtualHost>








Edit Apache ssl.conf File

/etc/httpd/conf.d/ssl.conf should be edited to contain the FQDN of your hostname like this: ServerName dataverse.example.edu:443 (substituting your hostname).

Near the bottom of /etc/httpd/conf.d/ssl.conf but before the closing </VirtualHost> directive, add the following:

# don't pass paths used by rApache and TwoRavens to Glassfish
ProxyPassMatch ^/RApacheInfo$ !
ProxyPassMatch ^/custom !
ProxyPassMatch ^/dataexplore !
# don't pass paths used by Shibboleth to Glassfish
ProxyPassMatch ^/Shibboleth.sso !
ProxyPassMatch ^/shibboleth-ds !
# pass everything else to Glassfish
ProxyPass / ajp://localhost:8009/

<Location /shib.xhtml>
  AuthType shibboleth
  ShibRequestSetting requireSession 1
  require valid-user
</Location>





You can download a sample ssl.conf file to compare it against the file you edited.

Note that /etc/httpd/conf.d/shib.conf and /etc/httpd/conf.d/shibboleth-ds.conf are expected to be present from installing Shibboleth via yum.

You may wish to also add a timeout directive to the ProxyPass line within ssl.conf. This is especially useful for larger file uploads as apache may prematurely kill the connection before the upload is processed.

e.g. ProxyPass / ajp://localhost:8009/ timeout=600 defines a timeout of 600 seconds.

Try to strike a balance with the timeout setting. Again a timeout too low will impact file uploads. A timeout too high may cause additional stress on the server as it will have to service idle clients for a longer period of time.






Configure Shibboleth


shibboleth2.xml

/etc/shibboleth/shibboleth2.xml should look something like the sample shibboleth2.xml file below, but you must substitute your hostname in the entityID value. If your starting point is a shibboleth2.xml file provided by someone else, you must ensure that attributePrefix="AJP_" is added under ApplicationDefaults per the Shibboleth wiki [https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPJavaInstall] . Without the AJP_ configuration in place, the required Shibboleth Attributes will be null and users will be unable to log in.

<!--
This is an example shibboleth2.xml generated originally by http://testshib.org
and tweaked for Dataverse.  See also:

- attribute-map.xml
- dataverse-idp-metadata.xml

https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPConfiguration
-->

<SPConfig xmlns="urn:mace:shibboleth:2.0:native:sp:config" xmlns:md="urn:oasis:names:tc:SAML:2.0:metadata"
    xmlns:saml="urn:oasis:names:tc:SAML:2.0:assertion"
    clockSkew="1800">

    <!-- FIXME: change the entityID to your hostname. -->
    <ApplicationDefaults entityID="https://dataverse.example.edu/sp"
        REMOTE_USER="eppn" attributePrefix="AJP_">

        <!-- You should use secure cookies if at all possible.  See cookieProps in this Wiki article. -->
        <!-- https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPSessions -->
        <Sessions lifetime="28800" timeout="3600" checkAddress="false" relayState="ss:mem" handlerSSL="false">

	    <SSO>
	      SAML2 SAML1
	    </SSO>

            <!-- SAML and local-only logout. -->
            <!-- https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPServiceLogout -->
            <Logout>SAML2 Local</Logout>

            <!--
                Handlers allow you to interact with the SP and gather more information.  Try them out!
                Attribute values received by the SP through SAML will be visible at:
                http://dataverse.example.edu/Shibboleth.sso/Session
            -->

            <!-- Extension service that generates "approximate" metadata based on SP configuration. -->
            <Handler type="MetadataGenerator" Location="/Metadata" signing="false"/>

            <!-- Status reporting service. -->
            <Handler type="Status" Location="/Status" acl="127.0.0.1"/>

            <!-- Session diagnostic service. -->
	    <!-- showAttributeValues must be set to true to see attributes at /Shibboleth.sso/Session . -->
            <Handler type="Session" Location="/Session" showAttributeValues="true"/>

            <!-- JSON feed of discovery information. -->
            <Handler type="DiscoveryFeed" Location="/DiscoFeed"/>

        </Sessions>

        <!-- Error pages to display to yourself if something goes horribly wrong. -->
        <Errors supportContact="root@localhost" logoLocation="/shibboleth-sp/logo.jpg"
                styleSheet="/shibboleth-sp/main.css"/>

        <!-- Loads and trusts a metadata file that describes only the Testshib IdP and how to communicate with it. -->
        <!-- IdPs we want allow go in /etc/shibboleth/dataverse-idp-metadata.xml -->
        <MetadataProvider type="XML" file="dataverse-idp-metadata.xml" backingFilePath="local-idp-metadata.xml" legacyOrgNames="true" reloadInterval="7200"/>
        <!-- Uncomment to enable all the Research & Scholarship IdPs from InCommon -->
        <!--
        <MetadataProvider type="XML" url="http://md.incommon.org/InCommon/InCommon-metadata.xml" backingFilePath="InCommon-metadata.xml" maxRefreshDelay="3600">
            <DiscoveryFilter type="Whitelist" matcher="EntityAttributes">
                <saml:Attribute
                    Name="http://macedir.org/entity-category-support"
                    NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">
                    <saml:AttributeValue>http://id.incommon.org/category/research-and-scholarship</saml:AttributeValue>
                </saml:Attribute>
                <saml:Attribute
                    Name="http://macedir.org/entity-category-support"
                    NameFormat="urn:oasis:names:tc:SAML:2.0:attrname-format:uri">
                    <saml:AttributeValue>http://refeds.org/category/research-and-scholarship</saml:AttributeValue>
                </saml:Attribute>
            </DiscoveryFilter>
        </MetadataProvider>
        -->

        <!-- Attribute and trust options you shouldn't need to change. -->
        <AttributeExtractor type="XML" validate="true" path="attribute-map.xml"/>
        <AttributeResolver type="Query" subjectMatch="true"/>
        <AttributeFilter type="XML" validate="true" path="attribute-policy.xml"/>

        <!-- Your SP generated these credentials.  They're used to talk to IdP's. -->
        <CredentialResolver type="File" key="sp-key.pem" certificate="sp-cert.pem"/>

    </ApplicationDefaults>

    <!-- Security policies you shouldn't change unless you know what you're doing. -->
    <SecurityPolicyProvider type="XML" validate="true" path="security-policy.xml"/>

    <!-- Low-level configuration about protocols and bindings available for use. -->
    <ProtocolProvider type="XML" validate="true" reloadChanges="false" path="protocols.xml"/>

</SPConfig>






Specific Identity Provider(s)

When configuring the MetadataProvider section of shibboleth2.xml you should consider if your users will all come from the same Identity Provider (IdP) or not.

Most Dataverse installations will probably only want to authenticate users via Shibboleth using their home institution’s Identity Provider (IdP).  The configuration above in shibboleth2.xml looks for the metadata for the Identity Providers (IdPs) in a file at /etc/shibboleth/dataverse-idp-metadata.xml.  You can download a sample dataverse-idp-metadata.xml file and that includes the TestShib IdP from http://testshib.org but you will want to edit this file to include the metadata from the Identity Provider(s) you care about. The identity people at your institution will be able to provide you with this metadata and they will very likely ask for a list of attributes that Dataverse requires, which are listed at Shibboleth Attributes.




Identity Federation

Rather than or in addition to specifying individual Identity Provider(s) you may wish to broaden the number of users who can log into your Dataverse installation by registering your Dataverse installation as a Service Provider (SP) within an identity federation. For example, in the United States, users from the many institutions registered with the “InCommon” identity federation [https://incommon.org/federation/info/all-entities.html#IdPs] that release the “Research & Scholarship Attribute Bundle” [https://spaces.internet2.edu/display/InCFederation/Research+and+Scholarship+Attribute+Bundle]  will be able to log into your Dataverse installation if you register it as an InCommon Service Provider [https://incommon.org/federation/info/all-entities.html#SPs] that is part of the Research & Scholarship (R&S) category [https://incommon.org/federation/info/all-entity-categories.html#SPs].

The details of how to register with an identity federation are out of scope for this document, but a good starting point may be this list of identity federations across the world: http://www.protectnetwork.org/support/faq/identity-federations

One of the benefits of using shibd is that it can be configured to periodically poll your identity federation for updates as new Identity Providers (IdPs) join the federation you’ve registered with. For the InCommon federation, the following page describes how to download and verify signed InCommon metadata every hour: https://spaces.internet2.edu/display/InCFederation/Shibboleth+Metadata+Config#ShibbolethMetadataConfig-ConfiguretheShibbolethSP . You can also see an example of this as maxRefreshDelay="3600" in the commented out section of the shibboleth2.xml file above.

Once you’ve joined a federation the list of IdPs in the dropdown can be quite long! If you’re curious how many are in the list you could try something like this: curl https://dataverse.example.edu/Shibboleth.sso/DiscoFeed | jq '.[].entityID' | wc -l






Shibboleth Attributes

The following attributes are required for a successful Shibboleth login:


	Shib-Identity-Provider


	eppn


	givenName


	sn


	email




See also https://www.incommon.org/federation/attributesummary.html and https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPAttributeAccess




attribute-map.xml

By default, some attributes /etc/shibboleth/attribute-map.xml are commented out. Edit the file to enable them so that all the require attributes come through. You can download a sample attribute-map.xml file.






Disable or Reconfigure SELinux

SELinux is set to “enforcing” by default on RHEL/CentOS, but unfortunately Shibboleth does not “just work” with SELinux. You have two options. You can disable SELinux or you can reconfigure SELinux to accommodate Shibboleth.


Disable SELinux

The first and easiest option is to set SELINUX=permisive in /etc/selinux/config and run setenforce permissive or otherwise disable SELinux to get Shibboleth to work. This is apparently what the Shibboleth project expects because their wiki page at https://wiki.shibboleth.net/confluence/display/SHIB2/NativeSPSELinux says, “At the present time, we do not support the SP in conjunction with SELinux, and at minimum we know that communication between the mod_shib and shibd components will fail if it’s enabled. Other problems may also occur.”




Reconfigure SELinux to Accommodate Shibboleth

The second (more involved) option is to use the checkmodule, semodule_package, and semodule tools to apply a local policy to make Shibboleth work with SELinux. Let’s get started.


Put Type Enforcement (TE) File in misc directory

Copy and paste or download the shibboleth.te Type Enforcement (TE) file below and put it at /etc/selinux/targeted/src/policy/domains/misc/shibboleth.te.

module shibboleth 1.0;

require {
    class file {open read};
    class sock_file write;
    class unix_stream_socket connectto;
    type httpd_t;
    type initrc_t;
    type var_run_t;
    type var_t;
}

allow httpd_t initrc_t:unix_stream_socket connectto;
allow httpd_t var_run_t:sock_file write;
allow httpd_t var_t:file {open read};





(If you would like to know where the shibboleth.te came from and how to hack on it, please see the SELinux section of the Developer Guide. Pull requests are welcome!)




Navigate to misc directory

cd /etc/selinux/targeted/src/policy/domains/misc




Run checkmodule

checkmodule -M -m -o shibboleth.mod shibboleth.te




Run semodule_package

semodule_package -o shibboleth.pp -m shibboleth.mod

Silent is golden. No output is expected.




Run semodule

semodule -i shibboleth.pp

Silent is golden. No output is expected. This will place a file in /etc/selinux/targeted/modules/active/modules/shibboleth.pp and include “shibboleth” in the output of semodule -l. See the semodule man page if you ever want to remove or disable the module you just added.

Congrats! You’ve made the creator of http://stopdisablingselinux.com proud. :)








Restart Apache and Shibboleth

After configuration is complete:

service shibd restart

service httpd restart




Configure Apache and shibd to Start at Boot

chkconfig httpd on

chkconfig shibd on




Verify DiscoFeed and Metadata URLs

As a sanity check, visit the following URLs (substituting your hostname) to make sure you see JSON and XML:


	https://dataverse.example.edu/Shibboleth.sso/DiscoFeed


	https://dataverse.example.edu/Shibboleth.sso/Metadata




The JSON in DiscoFeed comes from the list of IdPs you configured in the MetadataProvider section of shibboleth2.xml and will form a dropdown list on the Login Page.




Add the Shibboleth Authentication Provider to Dataverse

Now that you’ve configured Glassfish, Apache, and shibd, you are ready to turn your attention back to Dataverse to enable Shibboleth as an “authentication provider.” You will be using curl to POST the following JSON file to the authenticationProviders endpoint of the Native API.

{
    "id":"shib",
    "factoryAlias":"shib",
    "enabled":true
}





curl -X POST -H 'Content-type: application/json' --upload-file shibAuthProvider.json http://localhost:8080/api/admin/authenticationProviders

Now that you’ve added the Shibboleth authentication provider to Dataverse, as described in the Account Creation + Management section of the User Guide, you should see a new “Your Institution” button under “Other Log In Options” on the Log In page. After clicking “Your Institution”, you should see the institutions you configured in /etc/shibboleth/shibboleth2.xml above. If not, double check the content of the DiscoFeed URL above. If you don’t see the “Your Institution” button, confirm that the the “shib” authentication provider has been added by listing all the authentication providers Dataverse knows about:

curl http://localhost:8080/api/admin/authenticationProviders

Once you have confirmed that the Dataverse web interface is listing the institutions you expect, you’ll want to temporarily remove the Shibboleth authentication provider you just added because users won’t be able to log in via their institution until you have exchanged metadata with one or more Identity Providers (IdPs), which is described below.  As explained in the section of the Native API of the API Guide, you can delete an authentication provider by passing its id:

curl -X DELETE http://localhost:8080/api/admin/authenticationProviders/shib

Before contacting your actual Identity Provider, we recommend testing first with the “TestShib” Identity Provider (IdP) to ensure that you have configured everything correctly.




Exchange Metadata with Your Identity Provider

http://testshib.org (TestShib) is a fantastic resource for testing Shibboleth configurations. Depending on your relationship with your identity people you may want to avoid bothering them until you have tested your Dataverse configuration with the TestShib Identity Provider (IdP). This process is explained below.

If you’ve temporarily configured your MetadataProvider to use the TestShib Identity Provider (IdP) as outlined above, you can download your metadata like this (substituting your hostname in both places):

curl https://dataverse.example.edu/Shibboleth.sso/Metadata > dataverse.example.edu

Then upload your metadata to http://testshib.org/register.html

Then try to log in to Dataverse using the TestShib IdP. After logging in, you can visit the https://dataverse.example.edu/Shibboleth.sso/Session (substituting your hostname) to troubleshoot which attributes are being received. You should see something like the following:

Miscellaneous
Session Expiration (barring inactivity): 479 minute(s)
Client Address: 65.112.10.82
SSO Protocol: urn:oasis:names:tc:SAML:2.0:protocol
Identity Provider: https://idp.testshib.org/idp/shibboleth
Authentication Time: 2016-03-08T13:45:10.922Z
Authentication Context Class: urn:oasis:names:tc:SAML:2.0:ac:classes:PasswordProtectedTransport
Authentication Context Decl: (none)

Attributes
affiliation: Member@testshib.org;Staff@testshib.org
cn: Me Myself And I
entitlement: urn:mace:dir:entitlement:common-lib-terms
eppn: myself@testshib.org
givenName: Me Myself
persistent-id: https://idp.testshib.org/idp/shibboleth!https://dataverse.example.edu/sp!RuyCiLvUcgmKqyh/rOQPh+wyR7s=
sn: And I
telephoneNumber: 555-5555
uid: myself
unscoped-affiliation: Member;Staff





(As of this writing the TestShib IdP does not send the “mail” attribute, a required attribute, but for testing purposes, Dataverse compensates for this for the TestShib IdP and permits login anyway.)

When you are done testing, you can delete the TestShib users you created like this (after you have deleted any data and permisions associated with the users):

curl -X DELETE http://localhost:8080/api/admin/authenticatedUsers/myself

(Of course, you are also welcome to do a fresh reinstall per the Installation section.)

If your Dataverse installation is working with TestShib it should work with your institution’s Identity Provider (IdP). Next, you should:


	Send your identity people your metadata file above (or a link to download it themselves). From their perspective you are a Service Provider (SP).


	Ask your identity people to send you the metadata for the Identity Provider (IdP) they operate. See the section above on shibboleth2.xml and MetadataProvider for what to do with the IdP metadata. Restart shibd and httpd as necessary.


	Re-add Shibboleth as an authentication provider to Dataverse as described above.


	Test login to Dataverse via your institution’s Identity Provider (IdP).







Backup sp-cert.pem and sp-key.pem Files

Especially if you have gotten authentication working with your institution’s Identity Provider (IdP), now is the time to make sure you have backups.

The installation and configuration of Shibboleth will result in the following cert and key files being created and it’s important to back them up. The cert is in the metadata you shared with your IdP:


	/etc/shibboleth/sp-cert.pem


	/etc/shibboleth/sp-key.pem




If you have more than one Glassfish server, you should use the same sp-cert.pem and sp-key.pem files on all of them. If these files are compromised and you need to regenerate them, you can cd /etc/shibboleth and run keygen.sh like this (substituting you own hostname):

./keygen.sh -f -u shibd -g shibd -h dataverse.example.edu -e https://dataverse.example.edu/sp




Debugging

The Troubleshooting section of the Admin Guide explains how to increase Glassfish logging levels. The relevant classes and packages are:


	edu.harvard.iq.dataverse.Shib


	edu.harvard.iq.dataverse.authorization.providers.shib


	edu.harvard.iq.dataverse.authorization.groups.impl.shib







Converting Accounts

As explained in the Account Creation + Management section of the User Guide, users can convert from one login option to another.


Converting Local Users to Shibboleth

If you are running in “remote and local” mode and have existing local users that you’d like to convert to Shibboleth users, give them the following steps to follow, which are also explained in the Account Creation + Management section of the User Guide:


	Log in with your local account to make sure you know your password, which will be needed for the account conversion process.


	Log out of your local account.


	Log in with your Shibboleth account.


	If the email address associated with your local account matches the email address asserted by the Identity Provider (IdP), you will be prompted for the password of your local account and asked to confirm the conversion of your account. You’re done! Browse around to ensure you see all the data you expect to see. Permissions have been preserved.


	If the email address asserted by the Identity Provider (IdP) does not match the email address of any local user, you will be prompted to create a new account. If you were expecting account conversion, you should decline creating a new Shibboleth account, log back in to your local account, and let Support know the email on file for your local account. Support may ask you to change your email address for your local account to the one that is being asserted by the Identity Provider. Someone with access to the Glassfish logs will see this email address there.







Converting Shibboleth Users to Local

Whereas users convert their own accounts from local to Shibboleth as described above, conversion in the opposite direction is performed by a sysadmin. A common scenario may be as follows:


	A user emails Support saying, “I left the university (or wherever) and can’t log in to Dataverse anymore. What should I do?”


	Support replies asking the user for a new email address (Gmail, new institution email, etc.) to associate with their Dataverse account.


	The user replies with a new email address to associate with their Dataverse account.


	Support runs the curl command below, supplying the database id of the user to convert and the new email address and notes the username returned.


	Support emails the user and indicates that that they should use the password reset feature to set a new password and to make sure to take note of their username under Account Information (or the password reset confirmation email) since the user never had a username before.


	The user resets password and is able to log in with their local account. All permissions have been preserved with the exception of any permissions assigned to an institution-wide Shibboleth group to which the user formerly belonged.




In the example below, the user has indicated that the new email address they’d like to have associated with their account is “former.shib.user@mailinator.com” and their user id from the authenticateduser database table is “2”. The API token must belong to a superuser (probably the sysadmin executing the command). Note that the old version of this call, convertShibToBuiltIn, is deprecated and will be deleted in a future release.

curl -H "X-Dataverse-key: $API_TOKEN" -X PUT -d "former.shib.user@mailinator.com" http://localhost:8080/api/admin/authenticatedUsers/id/2/convertRemoteToBuiltIn

Rather than looking up the user’s id in the authenticateduser database table, you can issue this command to get a listing of all users:

curl -H "X-Dataverse-key: $API_TOKEN" http://localhost:8080/api/admin/authenticatedUsers

Per above, you now need to tell the user to use the password reset feature to set a password for their local account.






Institution-Wide Shibboleth Groups

Dataverse allows you to optionally define “institution-wide Shibboleth groups” based on the the entityID of the Identity Provider (IdP) used to authenticate. For example, an “institution-wide Shibboleth group” with https://idp.testshib.org/idp/shibboleth as the IdP would include everyone who logs in via the TestShib IdP mentioned above.

To create an institution-wide Shibboleth groups, create a JSON file as below and issue this curl command: curl http://localhost:8080/api/admin/groups/shib -X POST -H 'Content-type:application/json' --upload-file shibGroupTestShib.json

{
  "name": "All testshib.org Shibboleth Users",
  "attribute": "Shib-Identity-Provider",
  "pattern": "https://idp.testshib.org/idp/shibboleth"
}





Institution-wide Shibboleth groups are based on the “Shib-Identity-Provider” SAML attribute asserted at runtime after successful authentication with the Identity Provider (IdP) and held within the browser session rather than being persisted in the database for any length of time. It is for this reason that roles based on these groups, such as the ability to create a dataset, are not honored by non-browser interactions, such as through the SWORD API.

To list institution-wide Shibboleth groups: curl http://localhost:8080/api/admin/groups/shib

To delete an institution-wide Shibboleth group (assuming id 1): curl -X DELETE http://localhost:8080/api/admin/groups/shib/1

Support for arbitrary attributes beyond “Shib-Identity-Provider” such as “eduPersonScopedAffiliation”, etc. is being tracked at https://github.com/IQSS/dataverse/issues/1515







          

      

      

    





  

    
      
          
            
  
OAuth Login: ORCID, GitHub, Google


Contents:


	Introduction


	Setup


	Identity Provider Side


	Obtain Client ID and Client Secret






	Dataverse Side


	ORCID Sandbox










	Converting Local Users to OAuth


	Converting OAuth Users to Local







Introduction

As explained under “Auth Modes” in the Configuration section, OAuth2 is one of the ways that you can have end users log in to Dataverse.

OAuth2 [https://oauth.net/2/] is an authentication protocol that allows systems to share user data, while letting the users control what data is being shared. When you see buttons stating “login with Google” or “login through Facebook”, OAuth2 is probably involved. For the purposes of this section, we will shorten “OAuth2” to just “OAuth.” OAuth can be compared and contrasted with Shibboleth.

Dataverse supports three OAuth providers: ORCID [http://orcid.org], GitHub [https://github.com], and Google [https://console.developers.google.com].




Setup

Setting up an OAuth identity provider to work with Dataverse requires setup in two places: the provider, and the Dataverse installation.


Identity Provider Side


Obtain Client ID and Client Secret

Before OAuth providers will release information about their users (first name, last name, etc.) to your Dataverse installation, you must request a “Client ID” and “Client Secret” from them. In the case of GitHub and Google, this is as simple as clicking a few buttons and there is no cost associated with using their authentication service. ORCID, on the other hand, does not have an automated system for requesting these credentials, and it is not free to use the ORCID authentication service.

URLs to help you request a Client ID and Client Secret from the providers supported by Dataverse are provided below.  For all of these providers, it’s a good idea to request the Client ID and Client secret using a generic account, perhaps the one that’s associated with the :SystemEmail you’ve configured for Dataverse, rather than your own personal ORCID, GitHub, or Google account:


	ORCID: https://orcid.org/content/register-client-application-production-trusted-party


	GitHub: https://github.com/settings/applications/new via https://developer.github.com/v3/oauth/


	Google: https://console.developers.google.com/projectselector/apis/credentials via https://developers.google.com/identity/protocols/OAuth2WebServer (pick “OAuth client ID”)




Each of these providers will require the following information from you:


	Basic information about your Dataverse installation such as a name, description, URL, logo, privacy policy, etc.


	OAuth2 Redirect URI (ORCID) or Authorization Callback URL (GitHub) or Authorized Redirect URIs (Google): This is the URL on the Dataverse side to which the user will be sent after successfully authenticating with the identity provider. This should be the advertised URL of your Dataverse installation (the protocol, fully qualified domain name, and optional port configured via the dataverse.siteUrl JVM option mentioned in the Configuration section) appended with /oauth2/callback.xhtml such as https://dataverse.example.edu/oauth2/callback.xhtml.




When you are finished you should have a Client ID and Client Secret from the provider. Keep them safe and secret.






Dataverse Side

As explained under “Auth Modes” in the Configuration section, available authentication providers are stored in the authenticationproviderrow database table and can be listed with this command:

curl http://localhost:8080/api/admin/authenticationProviders

We will POST a JSON file containing the Client ID and Client Secret to this authenticationProviders API endpoint to add another authentication provider. As a starting point, you’ll want to download the JSON template file matching the provider you’re setting up:


	orcid.json


	github.json


	google.json




Here’s how the JSON template for GitHub looks, for example:

{
    "id":"github",
    "factoryAlias":"oauth2",
    "title":"GitHub",
    "subtitle":"",
    "factoryData":"type: github | userEndpoint: NONE | clientId: FIXME | clientSecret: FIXME",
    "enabled":true
}





Edit the JSON template and replace the two “FIXME” values with the Client ID and Client Secret you obtained earlier. Then use curl to POST the JSON to Dataverse:

curl -X POST -H 'Content-type: application/json' --upload-file github.json http://localhost:8080/api/admin/authenticationProviders

After restarting Glassfish you should see the new provider under “Other options” on the Log In page, as described in the Account Creation + Management section of the User Guide.

By default, the Log In page will show the “builtin” provider, but you can adjust this via the :DefaultAuthProvider configuration option. For details, see Configuration.


ORCID Sandbox

ORCID provides a sandbox registry, which may be useful for staging, or for development installations.
This template can be used for configuring this setting (this is not something you should use in a production environment):


	orcid-sandbox.json




Please note that the Prerequisites section contains an step regarding CA certs in Glassfish that must be followed to get ORCID login to work.








Converting Local Users to OAuth

Once you have enabled at least one OAuth provider, existing users might want to change their login method from local to OAuth to avoid having a Dataverse-specific password. This is documented from the end user perspective in the Account Creation + Management section of the User Guide. Users will be prompted to create a new account but can choose to convert an existing local account after confirming their password.




Converting OAuth Users to Local

Whereas users convert their own accounts from local to OAuth as described above, conversion in the opposite direction is performed by a sysadmin. A common scenario may be as follows:


	A user emails Support saying, “Rather than logging in with Google, I want to log in with ORCID (or a local password). What should I do?”


	Support replies asking the user for a new email address to associate with their Dataverse account.


	The user replies with a new email address to associate with their Dataverse account.


	Support runs the curl command below, supplying the database id of the user to convert and the new email address and notes the username returned.


	Support emails the user and indicates that they should use the password reset feature to set a new password and to make sure to take note of their username under Account Information (or the password reset confirmation email) since the user never had a username before.


	The user resets password and is able to log in with their local account. All permissions have been preserved. The user can continue to log in with this Dataverse-specific password or they can convert to an identity provider, if available.




In the example below, the user has indicated that the new email address they’d like to have associated with their account is “former.oauth.user@mailinator.com” and their user id from the authenticateduser database table is “42”. The API token must belong to a superuser (probably the sysadmin executing the command).

curl -H "X-Dataverse-key: $API_TOKEN" -X PUT -d "former.oauth.user@mailinator.com" http://localhost:8080/api/admin/authenticatedUsers/id/42/convertRemoteToBuiltIn

The expected output is something like this:

{
  "status": "OK",
  "data": {
    "email": "former.oauth.user@mailinator.com",
    "username": "jdoe"
  }
}





Rather than looking up the user’s id in the authenticateduser database table, you can issue this command to get a listing of all users:

curl -H "X-Dataverse-key: $API_TOKEN" http://localhost:8080/api/admin/authenticatedUsers

Per above, you now need to tell the user to use the password reset feature to set a password for their local account.







          

      

      

    





  

    
      
          
            
  
External Tools

External tools can provide additional features that are not part of Dataverse itself, such as data exploration. See the “Writing Your Own External Tool” section below for more information on developing your own tool for Dataverse.


Contents:


	Inventory of External Tools


	Downloading and Adjusting an External Tool Manifest File


	Making an External Tool Available in Dataverse


	Listing all External Tools in Dataverse


	Removing an External Tool Available in Dataverse


	Writing Your Own External Tool







Inventory of External Tools

Support for external tools is just getting off the ground but the following tools have been successfully integrated with Dataverse:


	TwoRavens: a system of interlocking statistical tools for data exploration, analysis, and meta-analysis: http://2ra.vn. See the TwoRavens: Tabular Data Exploration section of the User Guide for more information on TwoRavens from the user perspective and the TwoRavens section of the Installation Guide.


	Data Explorer: a GUI which lists the variables in a tabular data file allowing searching, charting and cross tabulation analysis. See the README.md file at https://github.com/scholarsportal/Dataverse-Data-Explorer for the instructions on adding Data Explorer to your Dataverse; and the Prerequisites section of the Installation Guide for the instructions on how to set up basic R configuration required (specifically, Dataverse uses R to generate .prep metadata files that are needed to run Data Explorer).


	[Your tool here! Please get in touch! :) ]







Downloading and Adjusting an External Tool Manifest File

In order to make external tools available within Dataverse, you need to configure Dataverse to be aware of them.

External tools must be expressed in an external tool manifest file, a specific JSON format Dataverse requires. The author of the external tool may be able to provide you with a JSON file and installation instructions.  The JSON file might look like this:

{
  "displayName": "Awesome Tool",
  "description": "The most awesome tool.",
  "type": "explore",
  "toolUrl": "https://awesometool.com",
  "toolParameters": {
    "queryParameters": [
      {
        "fileid": "{fileId}"
      },
      {
        "key": "{apiToken}"
      }
    ]
  }
}





type is required and must be explore or configure to make the tool appear under a button called “Explore” or “Configure”, respectively. Currently external tools only operate on tabular files that have been successfully ingested. (For more on ingest, see the Tabular Data, Representation, Storage and Ingest of the User Guide.)

In the example above, a mix of required and optional reserved words appear that can be used to insert dynamic values into tools. The supported values are:


	{fileId} (required) - The Dataverse database ID of a file the external tool has been launched on.


	{siteUrl} (optional) - The URL of the Dataverse installation that hosts the file with the fileId above.


	{apiToken} (optional) - The Dataverse API token of the user launching the external tool, if available.







Making an External Tool Available in Dataverse

If the JSON file were called, for example, awesomeTool.json you would make any necessary adjustments, as described above, and then make the tool available within Dataverse with the following curl command:

curl -X POST -H 'Content-type: application/json' --upload-file awesomeTool.json http://localhost:8080/api/admin/externalTools




Listing all External Tools in Dataverse

To list all the external tools that are available in Dataverse:

curl http://localhost:8080/api/admin/externalTools




Removing an External Tool Available in Dataverse

Assuming the external tool database id is “1”, remove it with the following command:

curl -X DELETE http://localhost:8080/api/admin/externalTools/1




Writing Your Own External Tool

If you have an idea for an external tool, please let the Dataverse community know by posting about it on the dataverse-community mailing list: https://groups.google.com/forum/#!forum/dataverse-community

If you need help with your tool, please feel free to post on the dataverse-dev mailing list: https://groups.google.com/forum/#!forum/dataverse-dev

Once you’ve gotten your tool working, please make a pull request to update the list of tools above.







          

      

      

    





  

    
      
          
            
  
Advanced Installation

Advanced installations are not officially supported but here we are at least documenting some tips and tricks that you might find helpful. You can find a diagram of an advanced installation in the Preparation section.


Contents:


	Multiple Glassfish Servers


	Detecting Which Glassfish Server a User Is On











Multiple Glassfish Servers

You should be conscious of the following when running multiple Glassfish servers.


	Only one Glassfish server can be the dedicated timer server, as explained in the Dataverse Application Timers section of the Admin Guide.


	When users upload a logo for their dataverse using the “theme” feature described in the Dataverse Management section of the User Guide, these logos are stored only on the Glassfish server the user happend to be on when uploading the logo. By default these logos are written to the directory /usr/local/glassfish4/glassfish/domains/domain1/docroot/logos.


	When a sitemp is created by a Glassfish server it is written to the filesystem of just that Glassfish server. By default the sitemap is written to the directory /usr/local/glassfish4/glassfish/domains/domain1/docroot/sitemap.





Detecting Which Glassfish Server a User Is On

If you have successfully installed multiple Glassfish servers behind a load balancer you might like to know which server a user has landed on. A straightforward solution is to place a file called host.txt in a directory that is served up by Apache such as /var/www/html and then configure Apache not to proxy requests to /host.txt to Glassfish. Here are some example commands on RHEL/CentOS 7 that accomplish this:

[root@server1 ~]# vim /etc/httpd/conf.d/ssl.conf
[root@server1 ~]# grep host.txt /etc/httpd/conf.d/ssl.conf
ProxyPassMatch ^/host.txt !
[root@server1 ~]# systemctl restart httpd.service
[root@server1 ~]# echo $HOSTNAME > /var/www/html/host.txt
[root@server1 ~]# curl https://dataverse.example.edu/host.txt
server1.example.edu





You would repeat the steps above for all of your Glassfish servers. If users seem to be having a problem with a particular server, you can ask them to visit https://dataverse.example.edu/host.txt and let you know what they see there (e.g. “server1.example.edu”) to help you know which server to troubleshoot.

Please note that “Network Ports” under the Configuration section has more information on fronting Glassfish with Apache. The Shibboleth section talks about the use of ProxyPassMatch.









          

      

      

    





  

    
      
          
            
  
Developer Guide

Contents:



	Introduction
	Intended Audience

	Getting Help

	Core Technologies

	Roadmap

	Kanban Board

	Issue Tracker

	Related Guides

	Related Projects





	Development Environment
	Quick Start

	Set Up Dependencies
	Supported Operating Systems

	Install Java

	Install Netbeans or Maven

	Install Homebrew (Mac Only)

	Clone the Dataverse Git Repo

	Build the Dataverse War File

	Install jq

	Install Glassfish

	Install PostgreSQL

	Install Solr





	Run the Dataverse Installer Script
	Verify Dataverse is Running





	Configure Your Development Environment for Publishing

	Next Steps





	Windows Development
	Running Dataverse in Vagrant
	Install Vagrant

	Install VirtualBox

	Reboot

	Install Git

	Configure Git to use Unix Line Endings

	Clone Git Repo

	vagrant up





	Running Dataverse in Minishift
	Install VirtualBox

	Install Git

	Install Minishift

	Clone Git Repo

	Start Minishift VM and Run Dataverse





	Improving Windows Support
	Windows Subsystem for Linux

	Discussion and Feedback









	Tips
	Iterating on Code and Redeploying
	Undeploy the war File from the install Script

	Add Glassfish 4.1 as a Server in Netbeans

	Ensure that Dataverse Will Be Deployed to Glassfish 4.1

	Make a Small Change to the Code

	Confirm the Change Was Deployed





	Netbeans Connector Chrome Extension

	Database Schema Exploration
	pgAdmin

	SchemaSpy





	Deploying With asadmin

	Running the Dataverse install Script in Non-Interactive Mode

	Preventing Glassfish from Phoning Home

	Solr

	Git
	Set Up SSH Keys

	Git on Mac









	Troubleshooting
	context-root in glassfish-web.xml Munged by Netbeans

	Configuring / Troubleshooting Mail Host

	Rebuilding Your Dev Environment

	DataCite





	Version Control
	Where to Find the Dataverse Code

	Branching Strategy
	Goals

	Branches
	The “master” Branch

	The “develop” Branch

	Feature Branches









	How to Make a Pull Request
	Find or Create a GitHub Issue

	Create a New Branch off the develop Branch

	Commit Your Change to Your New Branch

	Push Your Branch to GitHub

	Make a Pull Request

	Make Sure Your Pull Request Has Been Advanced to Code Review





	How to Resolve Conflicts in Your Pull Request

	Adding Commits to a Pull Request from a Fork





	SQL Upgrade Scripts
	Location of SQL Upgrade Scripts

	How to Determine if You Need to Create or Update a SQL Upgrade Script

	How to Create or Update a SQL Upgrade Script

	Communicating the Need to Run SQL Updates





	Testing
	The Health of a Codebase

	Testing in Depth

	Unit Tests
	Unit Test Automation Overview

	Writing Unit Tests with JUnit
	Refactoring Code to Make It Unit-Testable

	Observing Changes to Code Coverage

	Testing Commands

	Running Non-Essential (Excluded) Unit Tests









	Integration Tests
	Running the full API test suite using Docker

	Getting Set Up to Run REST Assured Tests
	The Burrito Key

	Root Dataverse Permissions

	Publish Root Dataverse

	dataverse.siteUrl

	Identifier Generation





	Writing Integration Tests with REST Assured





	Measuring Coverage of Integration Tests

	Load/Performance Testing
	Locust

	download-files.sh script





	The Phoenix Server
	How the Phoenix Tests Work

	How to Run the Phoenix Tests

	List of Tests Run Against the Phoenix Server





	Future Work
	Future Work on Unit Tests

	Future Work on Integration Tests

	Browser-Based Testing

	Installation Testing

	Future Work on Load/Performance Testing









	Documentation
	Quick Fix

	Other Changes (Sphinx)
	Installing Sphinx

	Using Sphinx





	Table of Contents

	Images
	GraphViz based images





	Versions





	Dependency Management
	Terms

	Direct dependencies

	Transitive dependencies
	Managing transitive dependencies in pom.xml





	Helpful tools

	Repositories





	Debugging
	Logging





	Coding Style
	Java
	Formatting Code
	Tabs vs. Spaces

	Braces Placement

	Format Code You Changed with Netbeans

	Checking Your Formatting With Checkstyle





	Logging

	Avoid Hard-Coding Strings

	Type Safety





	Bash
	Formatting Code
	Tabs vs. Spaces









	Bike Shedding





	Deployment
	Deploying Dataverse to Amazon Web Services (AWS)
	Install AWS CLI
	Troubleshooting “aws: command not found”





	Configure AWS CLI

	Configure ~/.dataverse/ec2.env

	Download and Run the “Create Instance” Script

	Caveats









	Docker, Kubernetes, and OpenShift
	OpenShift
	Install Minishift

	Start Minishift

	Make the OpenShift Client Binary (oc) Executable

	Log in to Minishift from the Command Line

	Create a Minishift Project

	Create a Dataverse App within the Minishift Project

	Log into Minishift and Visit Dataverse in your Browser

	Troubleshooting
	Check Status of Dataverse Deployment to Minishift

	Review Logs of Dataverse Deployment to Minishift

	Get a Shell (ssh/rsh) on Containers Deployed to Minishift





	Cleaning up

	Making Changes
	Making Changes to Docker Images

	Making Changes to the OpenShift Config

	Making Changes to the PostgreSQL Database from the Glassfish Pod





	Scaling Dataverse by Increasing Replicas in a StatefulSet

	Configuring Persistent Volumes and Solr master node recovery

	Running Containers to Run as Root in Minishift

	Minishift Resources





	Docker
	Installing Docker

	All In One Docker Images for Testing

	Future production use on Minishift/OpenShift/Kubernetes
	Known Issues with Dataverse Images on Docker Hub













	Making Releases
	Create the release GitHub issue and branch
	1. Bump Version Numbers

	2. Save the EJB Database Create Script

	3. Check in the Changes Above…





	Merge “develop” into “master”

	Write Release Notes

	Make Artifacts Available for Download

	Publish Release





	Tools
	Netbeans Connector Chrome Extension

	pgAdmin

	Maven

	Vagrant

	PlantUML

	Eclipse Memory Analyzer Tool (MAT)

	PageKite

	MSV

	FontCustom

	SonarQube

	Infer

	lsof





	Universal Numerical Fingerprint (UNF)
	UNF Version 3

	UNF Version 5

	UNF Version 6
	I. UNF of a Data Vector

	II. Combining multiple UNFs to create UNFs of higher-level objects.

	Footnotes:









	Shibboleth and OAuth
	Shibboleth and OAuth





	Geospatial Data
	Geoconnect

	How Dataverse Ingests Shapefiles
	Ingest

	Example





	WorldMap JoinTargets + API Endpoint
	How Geoconnect Uses Join Target Information

	Retrieving Join Target Information from WorldMap API

	Saving Join Target Information to Geoconnect Database

	Setting Up WorldMap Test Data









	SELinux
	Introduction

	Development Environment

	Recreating the shibboleth.te File
	Ensure that SELinux is Enforcing

	Removing the Existing shibboleth.te Rules

	Exercising SELinux denials

	Stub out the new shibboleth.te file

	Iteratively Use audit2allow to Add Rules and Test Your Change









	Big Data Support
	Data Capture Module (DCM)
	Install a DCM

	Downloading rsync scripts via Dataverse API

	How a DCM reports checksum success or failure to Dataverse

	Steps to set up a DCM mock for Development

	Troubleshooting

	Steps to set up a DCM via Docker for Development
	Docker Image Set-up

	Optional steps for setting up the S3 Docker DCM Variant

	Using the DCM Docker Containers

	Additional DCM docker development tips









	Repository Storage Abstraction Layer (RSAL)
	Configuring the RSAL Mock

	Configuring download via rsync





	Workflows
	Administration

	Available Steps
	log

	pause

	http/sr





















          

      

      

    





  

    
      
          
            
  
Introduction

Welcome! Dataverse [http://dataverse.org] is an open source [https://github.com/IQSS/dataverse/blob/master/LICENSE.md] project that loves contributors [https://github.com/IQSS/dataverse/blob/develop/CONTRIBUTING.md]!


Contents:


	Intended Audience


	Getting Help


	Core Technologies


	Roadmap


	Kanban Board


	Issue Tracker


	Related Guides


	Related Projects







Intended Audience

This guide is intended primarily for developers who want to work on the main Dataverse code base at https://github.com/IQSS/dataverse but see “Related Projects” below for other code you can work on!

To get started, you’ll want to set up your Development Environment and make sure you understand the branching strategy described in the Version Control section and how to make a pull request. Testing is expected. Opinions about Coding Style are welcome!




Getting Help

If you have any questions at all, please reach out to other developers via the channels listed in https://github.com/IQSS/dataverse/blob/develop/CONTRIBUTING.md such as http://chat.dataverse.org (#dataverse on freenode), the dataverse-dev [https://groups.google.com/forum/#!forum/dataverse-dev] mailing list, community calls [https://dataverse.org/community-calls], or support@dataverse.org.




Core Technologies

Dataverse is a Java EE [http://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition] application that is compiled into a war file and deployed to an application server (Glassfish) which is configured to work with a relational database (PostgreSQL) and a search engine (Solr).

We make use of a variety of Java EE technologies such as JPA, JAX-RS, JMS, and JSF. The front end is built using PrimeFaces and Bootstrap.




Roadmap

For the Dataverse development roadmap, please see https://dataverse.org/goals-roadmap-and-releases




Kanban Board

You can get a sense of what’s currently in flight (in dev, in QA, etc.) by looking at https://waffle.io/IQSS/dataverse




Issue Tracker

We use GitHub Issues as our issue tracker: https://github.com/IQSS/dataverse/issues




Related Guides

If you are a developer who wants to make use of Dataverse APIs, please see the API Guide. If you have front-end UI questions, please see the Style Guide.

If you are a sysadmin who likes to code, you may be interested in hacking on installation scripts mentioned in the Installation Guide. We validate the installation scripts with Tools such as Vagrant [http://vagrantup.com] and Docker (see the Docker, Kubernetes, and OpenShift section).




Related Projects

As a developer, you also may be interested in these projects related to Dataverse:


	External Tools - add additional features to Dataverse: See the External Tools section of the Installation Guide.


	Dataverse API client libraries - use Dataverse APIs from various languages: Client Libraries


	DVUploader - a stand-alone command-line Java application that uses the Dataverse API to support upload of files from local disk to a Dataset: https://github.com/IQSS/dataverse-uploader


	Miniverse - expose metrics from a Dataverse database: https://github.com/IQSS/miniverse


	Configuration management scripts - Ansible, Puppet, etc.: See “Advanced Installation” in the Preparation section of the Installation Guide.


	Universal Numerical Fingerprint (UNF) (Java) -  a Universal Numerical Fingerprint: https://github.com/IQSS/UNF


	GeoConnect (Python) - create a map by uploading files to Dataverse: https://github.com/IQSS/geoconnect


	DataTags [https://github.com/IQSS/DataTags] (Java and Scala) - tag datasets with privacy levels: https://github.com/IQSS/DataTags


	TwoRavens [http://2ra.vn] (Javascript) - a d3.js [http://d3js.org] interface for exploring data and running Zelig models: https://github.com/IQSS/TwoRavens


	Zelig [http://zeligproject.org] (R) - run statistical models on files uploaded to Dataverse: https://github.com/IQSS/Zelig


	Matrix [https://github.com/rindataverse/matrix] - a visualization showing the connectedness and collaboration between authors and their affiliations.


	Third party apps - make use of Dataverse APIs: Apps


	chat.dataverse.org - chat interface for Dataverse users and developers: https://github.com/IQSS/chat.dataverse.org


	[Your project here] :)






Next: Development Environment







          

      

      

    





  

    
      
          
            
  
Development Environment

These instructions are purposefully opinionated and terse to help you get your development environment up and running as quickly as possible! Please note that familiarity with running commands from the terminal is assumed.


Contents:


	Quick Start


	Set Up Dependencies


	Supported Operating Systems


	Install Java


	Install Netbeans or Maven


	Install Homebrew (Mac Only)


	Clone the Dataverse Git Repo


	Build the Dataverse War File


	Install jq


	Install Glassfish


	Install PostgreSQL


	Install Solr






	Run the Dataverse Installer Script


	Verify Dataverse is Running






	Configure Your Development Environment for Publishing


	Next Steps







Quick Start

The quickest way to get Dataverse running is to use Vagrant as described in the Tools section, but for day to day development work, we recommended the following setup.




Set Up Dependencies


Supported Operating Systems

Mac OS X or Linux is required because the setup scripts assume the presence of standard Unix utilities.

Windows is not well supported, unfortunately, but Vagrant and Minishift environments are described in the Windows Development section.




Install Java

Dataverse requires Java 8.

On Mac, we recommend Oracle’s version of the JDK, which can be downloaded from http://www.oracle.com/technetwork/java/javase/downloads/index.html

On Linux, you are welcome to use the OpenJDK available from package managers.




Install Netbeans or Maven

NetBeans IDE (Java EE bundle) is recommended, and can be downloaded from http://netbeans.org . Developers may use any editor or IDE. We recommend NetBeans because it is free, works cross platform, has good support for Java EE projects, and includes a required build tool, Maven.

Below we describe how to build the Dataverse war file with Netbeans but if you prefer to use only Maven, you can find installation instructions in the Tools section.




Install Homebrew (Mac Only)

On Mac, install Homebrew to simplify the steps below: https://brew.sh




Clone the Dataverse Git Repo

Fork https://github.com/IQSS/dataverse and then clone your fork like this:

git clone git@github.com:[YOUR GITHUB USERNAME]/dataverse.git




Build the Dataverse War File

Launch Netbeans and click “File” and then “Open Project”. Navigate to where you put the Dataverse code and double-click “dataverse” to open the project. Click “Run” in the menu and then “Build Project (dataverse)”. The first time you build the war file, it will take a few minutes while dependencies are downloaded from Maven Central. Feel free to move on to other steps but check back for “BUILD SUCCESS” at the end.

If you installed Maven instead of Netbeans, run mvn package.

NOTE: Do you use a locale different than en_US.UTF-8 on your development machine? Are you in a different timezone
than Harvard (Eastern Time)? You might experience issues while running tests that were written with these settings
in mind. The Maven  pom.xml tries to handle this for you by setting the locale to en_US.UTF-8 and timezone
UTC, but more, not yet discovered building or testing problems might lurk in the shadows.




Install jq

On Mac, run this command:

brew install jq

On Linux, install jq from your package manager or download a binary from http://stedolan.github.io/jq/




Install Glassfish

Glassfish 4.1 is required.

To install Glassfish, run the following commands:

cd /usr/local

sudo curl -O http://download.oracle.com/glassfish/4.1/release/glassfish-4.1.zip

sudo unzip glassfish-4.1.zip

sudo chown -R $USER /usr/local/glassfish4




Install PostgreSQL

PostgreSQL 9.6 is recommended to match the version in the Installation Guide.

On Mac, go to https://www.postgresql.org/download/macosx/ and choose “Interactive installer by EnterpriseDB” option. We’ve tested version 9.6.9. When prompted to set a password for the “database superuser (postgres)” just enter “password”.

After installation is complete, make a backup of the pg_hba.conf file like this:

sudo cp /Library/PostgreSQL/9.6/data/pg_hba.conf /Library/PostgreSQL/9.6/data/pg_hba.conf.orig

Then edit pg_hba.conf with an editor such as vi:

sudo vi /Library/PostgreSQL/9.6/data/pg_hba.conf

In the “METHOD” column, change all instances of “md5” to “trust”.

In the Finder, click “Applications” then “PostgreSQL 9.6” and launch the “Reload Configuration” app. Click “OK” after you see “server signaled”.

Next, launch the “pgAdmin” application from the same folder. Under “Browser”, expand “Servers” and double click “PostgreSQL 9.6”. When you are prompted for a password, leave it blank and click “OK”. If you have successfully edited “pg_hba.conf”, you can get in without a password.

On Linux, you should just install PostgreSQL from your package manager without worrying about the version as long as it’s 9.x. Find pg_hba.conf and set the authentication method to “trust” and restart PostgreSQL.




Install Solr

Solr [http://lucene.apache.org/solr/] 7.3.0 is required.

To install Solr, execute the following commands:

sudo mkdir /usr/local/solr

sudo chown $USER /usr/local/solr

cd /usr/local/solr

curl -O http://archive.apache.org/dist/lucene/solr/7.3.0/solr-7.3.0.tgz

tar xvfz solr-7.3.0.tgz

cd solr-7.3.0/server/solr

cp -r configsets/_default collection1

curl -O https://raw.githubusercontent.com/IQSS/dataverse/develop/conf/solr/7.3.0/schema.xml

mv schema.xml collection1/conf

curl -O https://raw.githubusercontent.com/IQSS/dataverse/develop/conf/solr/7.3.0/solrconfig.xml

mv solrconfig.xml collection1/conf/solrconfig.xml

cd /usr/local/solr/solr-7.3.0

bin/solr start

bin/solr create_core -c collection1 -d server/solr/collection1/conf






Run the Dataverse Installer Script

Navigate to the directory where you cloned the Dataverse git repo and run these commands:

cd scripts/installer

./install

It’s fine to accept the default values.

After a while you will see Enter admin user name [Enter to accept default]> and you can just hit Enter.


Verify Dataverse is Running

After the script has finished, you should be able to log into Dataverse with the following credentials:


	http://localhost:8080


	username: dataverseAdmin


	password: admin









Configure Your Development Environment for Publishing

Run the following command:

curl http://localhost:8080/api/admin/settings/:DoiProvider -X PUT -d FAKE




Next Steps

If you can log in to Dataverse, great! If not, please see the Troubleshooting section. For further assitance, please see “Getting Help” in the Introduction section.

You’re almost ready to start hacking on code. Now that the installer script has you up and running, you need to continue on to the Tips section to get set up to deploy code from your IDE or the command line.



Previous: Introduction | Next: Tips







          

      

      

    





  

    
      
          
            
  
Windows Development

Development on Windows is not well supported, unfortunately. You will have a much easier time if you develop on Mac or Linux as described under Development Environment section.

If you want to try using Windows for Dataverse development, your best best is to use Vagrant, as described below. Minishift is also an option. These instructions were tested on Windows 10.


Contents:


	Running Dataverse in Vagrant


	Install Vagrant


	Install VirtualBox


	Reboot


	Install Git


	Configure Git to use Unix Line Endings


	Clone Git Repo


	vagrant up






	Running Dataverse in Minishift


	Install VirtualBox


	Install Git


	Install Minishift


	Clone Git Repo


	Start Minishift VM and Run Dataverse






	Improving Windows Support


	Windows Subsystem for Linux


	Discussion and Feedback











Running Dataverse in Vagrant


Install Vagrant

Download and install Vagrant from https://www.vagrantup.com

Vagrant advises you to reboot but let’s install VirtualBox first.




Install VirtualBox

Download and install VirtualBox from https://www.virtualbox.org

Note that we saw an error saying “Oracle VM VirtualBox 5.2.8 Setup Wizard ended prematurely” but then we re-ran the installer and it seemed to work.




Reboot

Again, Vagrant asks you to reboot, so go ahead.




Install Git

Download and install Git from https://git-scm.com




Configure Git to use Unix Line Endings

Launch Git Bash and run the following commands:

git config --global core.autocrlf input

Pro tip: Use Shift-Insert to paste into Git Bash.

See also https://help.github.com/articles/dealing-with-line-endings/

If you skip this step you are likely to see the following error when you run vagrant up.

/tmp/vagrant-shell: ./install: /usr/bin/perl^M: bad interpreter: No such file or directory




Clone Git Repo

From Git Bash, run the following command:

git clone https://github.com/IQSS/dataverse.git




vagrant up

From Git Bash, run the following commands:

cd dataverse

The dataverse directory you changed is the one you just cloned. Vagrant will operate on a file called Vagrantfile.

vagrant up

After a long while you hopefully will have Dataverse installed at http://localhost:8888






Running Dataverse in Minishift

Minishift is a dev environment for OpenShift, which is Red Hat’s distribution of Kubernetes.  The Docker, Kubernetes, and OpenShift section contains much more detail but the essential steps for using Minishift on Windows are described below.


Install VirtualBox

Download and install VirtualBox from https://www.virtualbox.org




Install Git

Download and install Git from https://git-scm.com




Install Minishift

Download Minishift from https://docs.openshift.org/latest/minishift/getting-started/installing.html . It should be a zip file.

From Git Bash:

cd ~/Downloads

unzip minishift*.zip

mkdir ~/bin

cp minishift*/minishift.exe ~/bin




Clone Git Repo

From Git Bash, run the following commands:

git config --global core.autocrlf input

git clone https://github.com/IQSS/dataverse.git




Start Minishift VM and Run Dataverse

minishift start --vm-driver=virtualbox --memory=8GB

eval $(minishift oc-env)

oc new-project project1

cd ~/dataverse

oc new-app conf/openshift/openshift.json

minishift console

This should open a web browser. In Microsoft Edge we saw INET_E_RESOURCE_NOT_FOUND so if you see that, try Chrome instead. A cert error is expected. Log in with the username “developer” and any password such as “asdf”.

Under “Overview” you should see a URL that has “dataverse-project1” in it. You should be able to click it and log into Dataverse with the username “dataverseAdmin” and the password “admin”.






Improving Windows Support


Windows Subsystem for Linux

We have been unable to get Windows Subsystem for Linux (WSL) to work. We tried following the steps at https://docs.microsoft.com/en-us/windows/wsl/install-win10 but the “Get” button was greyed out when we went to download Ubuntu.




Discussion and Feedback

For more discussion of Windows support for Dataverse development see our community list thread “Do you want to develop on Windows?” [https://groups.google.com/d/msg/dataverse-community/Hs9j5rIxqPI/-q54751aAgAJ] We would be happy to inconrporate feedback from Windows developers into this page. The Documentation section describes how.









          

      

      

    





  

    
      
          
            
  
Tips

If you just followed the steps in Development Environment for the first time, you will need to get set up to deploy code to Glassfish. Below you’ll find other tips as well.


Contents:


	Iterating on Code and Redeploying


	Undeploy the war File from the install Script


	Add Glassfish 4.1 as a Server in Netbeans


	Ensure that Dataverse Will Be Deployed to Glassfish 4.1


	Make a Small Change to the Code


	Confirm the Change Was Deployed






	Netbeans Connector Chrome Extension


	Database Schema Exploration


	pgAdmin


	SchemaSpy






	Deploying With asadmin


	Running the Dataverse install Script in Non-Interactive Mode


	Preventing Glassfish from Phoning Home


	Solr


	Git


	Set Up SSH Keys


	Git on Mac











Iterating on Code and Redeploying

When you followed the steps in the Development Environment section, the war file was deployed to Glassfish by the install script. That’s fine but once you’re ready to make a change to the code you will need to get comfortable with undeploying and redeploying code (a war file) to Glassfish.

It’s certainly possible to manage deployment and undeployment of the war file via the command line using the asadmin command that ships with Glassfish (that’s what the install script uses and the steps are documented below), but we recommend getting set up with and IDE such as Netbeans to manage deployment for you.


Undeploy the war File from the install Script

Because the initial deployment of the war file was done outside of Netbeans by the install script, it’s a good idea to undeploy that war file to give Netbeans a clean slate to work with.

Assuming you installed Glassfish in /usr/local/glassfish4, run the following asadmin command to see the version of Dataverse that the install script deployed:

/usr/local/glassfish4/bin/asadmin list-applications

You will probably see something like dataverse-4.8.5  <ejb, web> as the output. To undeploy, use whichever version you see like this:

/usr/local/glassfish4/bin/asadmin undeploy dataverse-4.8.5

Now that Glassfish doesn’t have anything deployed, we can proceed with getting Netbeans set up to deploy the code.




Add Glassfish 4.1 as a Server in Netbeans

Dataverse only works with a specific version of Glassfish (see https://github.com/IQSS/dataverse/issues/2628 ) so you need to make sure Netbeans is deploying to that version rather than a newer version of Glassfish that may have come bundled with Netbeans.

Launch Netbeans and click “Tools” and then “Servers”. Click “Add Server” and select “Glassfish Server” and set the installation location to /usr/local/glassfish4. The default are fine so you can click “Next” and “Finish”. To avoid confusing, click “Remove Server” on the newer version of Glassfish that came bundled with Glassfish.

At this point you can manage Glassfish using Netbeans. Click “Window” and then “Services”. Expand “Servers” and right-click Glassfish to stop and then start it so that it appears in the Output window. Note that you can expand “Glassfish” and “Applications” to see if any applications are deployed.




Ensure that Dataverse Will Be Deployed to Glassfish 4.1

Click “Window” and then “Projects”. Click “File” and then “Project Properties (dataverse)”. Click “Run” and change “Server” from “No Server Selected” to your installation of Glassfish 4.1. Click OK.




Make a Small Change to the Code

Let’s make a tiny change to the code, compile the war file, deploy it, and verify that that we can see the change.

One of the smallest changes we can make is adjusting the build number that appears in the lower right of every page.

From the root of the git repo, run the following command to set the build number to the word “hello” (or whatever you want):

scripts/installer/custom-build-number hello

This should update or place a file at src/main/java/BuildNumber.properties.

Then, from Netbeans, click “Run” and then “Clean and Build Project (dataverse)”. After this completes successfully, click “Run” and then “Run Project (dataverse)”




Confirm the Change Was Deployed

After deployment, check the build number in the lower right to make sure it has been customized. You can also check the build number by running the following command:

curl http://localhost:8080/api/info/version

If you can see the change, great! Please go fix a bug or work on a feature! :)

Actually, before you start changing any code, you should create a branch as explained in the Version Control section.

While it’s fresh in your mind, if you have any suggestions on how to make the setup of a development environment easier, please get in touch!






Netbeans Connector Chrome Extension

For faster iteration while working on JSF pages, it is highly recommended that you install the Netbeans Connector Chrome Extension listed in the Tools section. When you save XHTML or CSS files, you will see the changes immediately. Hipsters call this “hot reloading”. :)




Database Schema Exploration

With over 100 tables, the Dataverse PostgreSQL database (“dvndb”) can be somewhat daunting for newcomers. Here are some tips for coming up to speed. (See also the SQL Upgrade Scripts section.)


pgAdmin

Back in the Development Environment section, we had you install pgAdmin, which can help you explore the tables and execute SQL commands. It’s also listed in the Tools section.




SchemaSpy

SchemaSpy is a tool that creates a website of entity-relationship diagrams based on your database.

As part of our build process for running integration tests against the latest code in the “develop” branch, we drop the database on the “phoenix” server, recreate the database by deploying the latest war file, and run SchemaSpy to create the following site: http://phoenix.dataverse.org/schemaspy/latest/relationships.html

To run this command on your laptop, download SchemaSpy and take a look at the syntax in scripts/deploy/phoenix.dataverse.org/post

To read more about the phoenix server, see the Testing section.






Deploying With asadmin

Sometimes you want to deploy code without using Netbeans or from the command line on a server you have ssh’ed into.

For the asadmin commands below, we assume you have already changed directories to /usr/local/glassfish4/glassfish/bin or wherever you have installed Glassfish.

There are four steps to this process:


	Build the war file: mvn package


	Check which version of Dataverse is deployed: ./asadmin list-applications


	Undeploy the Dataverse application (if necessary): ./asadmin undeploy dataverse-VERSION


	Copy the war file to the server (if necessary)


	Deploy the new code: ./asadmin deploy /path/to/dataverse-VERSION.war







Running the Dataverse install Script in Non-Interactive Mode

Rather than running the installer in “interactive” mode, it’s possible to put the values in a file. See “non-interactive mode” in the Installation section of the Installation Guide.




Preventing Glassfish from Phoning Home

By default, Glassfish reports analytics information. The administration guide suggests this can be disabled with ./asadmin create-jvm-options -Dcom.sun.enterprise.tools.admingui.NO_NETWORK=true, should this be found to be undesirable for development purposes.




Solr

Once some dataverses, datasets, and files have been created and indexed, you can experiment with searches directly from Solr at http://localhost:8983/solr/#/collection1/query and look at the JSON output of searches, such as this wildcard search: http://localhost:8983/solr/collection1/select?q=*%3A*&wt=json&indent=true . You can also get JSON output of static fields Solr knows about: http://localhost:8983/solr/schema/fields

You can simply double-click “start.jar” rather that running java -jar start.jar from the command line. Figuring out how to stop Solr after double-clicking it is an exercise for the reader.




Git


Set Up SSH Keys

You can use git with passwords over HTTPS, but it’s much nicer to set up SSH keys. https://github.com/settings/ssh is the place to manage the ssh keys GitHub knows about for you. That page also links to a nice howto: https://help.github.com/articles/generating-ssh-keys

From the terminal, ssh-keygen will create new ssh keys for you:


	private key: ~/.ssh/id_rsa - It is very important to protect your private key. If someone else acquires it, they can access private repositories on GitHub and make commits as you! Ideally, you’ll store your ssh keys on an encrypted volume and protect your private key with a password when prompted for one by ssh-keygen. See also “Why do passphrases matter” at https://help.github.com/articles/generating-ssh-keys


	public key: ~/.ssh/id_rsa.pub - After you’ve created your ssh keys, add the public key to your GitHub account.







Git on Mac

On a Mac, you won’t have git installed unless you have “Command Line Developer Tools” installed but running git clone for the first time will prompt you to install them.



Previous: Development Environment | Next: Troubleshooting









          

      

      

    





  

    
      
          
            
  
Troubleshooting

Over in the Development Environment section we described the “happy path” of when everything goes right as you set up your Dataverse development environment. Here are some common problems and solutions for when things go wrong.


Contents:


	context-root in glassfish-web.xml Munged by Netbeans


	Configuring / Troubleshooting Mail Host


	Rebuilding Your Dev Environment


	DataCite







context-root in glassfish-web.xml Munged by Netbeans

For unknown reasons, Netbeans will sometimes change the following line under src/main/webapp/WEB-INF/glassfish-web.xml:

<context-root>/</context-root>

Sometimes Netbeans will change / to /dataverse. Sometimes it will delete the line entirely. Either way, you will see very strange behavior when attempting to click around Dataverse in a browser. The home page will load but icons will be missing. Any other page will fail to load entirely and you’ll see a Glassfish error.

The solution is to put the file back to how it was before Netbeans touched it. If anyone knows of an open Netbeans bug about this, please let us know.




Configuring / Troubleshooting Mail Host

If you have trouble with the SMTP server, consider editing the install script to disable the SMTP check.

Out of the box, no emails will be sent from your development environment. This is because you have to set the :SystemEmail setting and make sure you’ve configured your SMTP server correctly.

You can configure :SystemEmail like this:

curl -X PUT -d 'Davisverse SWAT Team <davisthedog@harvard.edu>' http://localhost:8080/api/admin/settings/:SystemEmail

Unfortunately for developers not at Harvard, the installer script gives you by default an SMTP server of mail.hmdc.harvard.edu but you can specify an alternative SMTP server when you run the installer.

You can check the current SMTP server with the asadmin command:

./asadmin get server.resources.mail-resource.mail/notifyMailSession.host

This command helps verify what host your domain is using to send mail. Even if it’s the correct hostname, you may still need to adjust settings. If all else fails, there are some free SMTP service options available such as Gmail and MailGun. This can be configured from the GlassFish console or the command line.


	First, navigate to your Glassfish admin console: http://localhost:4848


	From the left-side panel, select JavaMail Sessions


	You should see one session named mail/notifyMailSession – click on that.




From this window you can modify certain fields of your Dataverse’s notifyMailSession, which is the JavaMail session for outgoing system email (such as on user signup or data publication). Two of the most important fields we need are:


	Mail Host: The DNS name of the default mail server (e.g. smtp.gmail.com)


	Default User: The username provided to your Mail Host when you connect to it (e.g. johndoe@gmail.com)




Most of the other defaults can safely be left as is. Default Sender Address indicates the address that your installation’s emails are sent from.

If your user credentials for the SMTP server require a password, you’ll need to configure some Additional Properties at the bottom.

IMPORTANT: Before continuing, it’s highly recommended that your Default User account does NOT use a password you share with other accounts, as one of the additional properties includes entering the Default User’s password (without concealing it on screen). For smtp.gmail.com you can safely use an app password [https://support.google.com/accounts/answer/185833?hl=en] or create an extra Gmail account for use with your Dataverse dev environment.

Authenticating yourself to a Mail Host can be tricky. As an example, we’ll walk through setting up our JavaMail Session to use smtp.gmail.com as a host by way of SSL on port 465. Use the Add Property button to generate a blank property for each name/value pair.







	Name

	Value





	mail.smtp.auth

	true



	mail.smtp.password

	[user’s (app) password*]



	mail.smtp.port

	465



	mail.smtp.socketFactory.port

	465



	mail.smtp.socketFactory.fallback

	false



	mail.smtp.socketFactory.class

	javax.net.ssl.SSLSocketFactory






*WARNING: Entering a password here will not conceal it on-screen. It’s recommended to use an app password (for smtp.gmail.com users) or utilize a dedicated/non-personal user account with SMTP server auths so that you do not risk compromising your password.

Save these changes at the top of the page and restart your Glassfish server to try it out.

The mail session can also be set from command line. To use this method, you will need to delete your notifyMailSession and create a new one. See the below example:


	Delete: ./asadmin delete-javamail-resource mail/MyMailSession


	Create (remove brackets and replace the variables inside): ./asadmin create-javamail-resource --mailhost [smtp.gmail.com] --mailuser [test\@test\.com] --fromaddress [test\@test\.com] --property mail.smtp.auth=[true]:mail.smtp.password=[password]:mail.smtp.port=[465]:mail.smtp.socketFactory.port=[465]:mail.smtp.socketFactory.fallback=[false]:mail.smtp.socketFactory.class=[javax.net.ssl.SSLSocketFactory] mail/notifyMailSession




These properties can be tailored to your own preferred mail service, but if all else fails these settings work fine with Dataverse development environments for your localhost.


	If you’re seeing a “Relay access denied” error in your Glassfish logs when your app attempts to send an email, double check your user/password credentials for the Mail Host you’re using.


	If you’re seeing a “Connection refused” / similar error upon email sending, try another port.




As another example, here is how to create a Mail Host via command line for Amazon SES:


	Delete: ./asadmin delete-javamail-resource mail/MyMailSession


	Create (remove brackets and replace the variables inside): ./asadmin create-javamail-resource --mailhost email-smtp.us-east-1.amazonaws.com --mailuser [test\@test\.com] --fromaddress [test\@test\.com] --transprotocol aws --transprotocolclass com.amazonaws.services.simpleemail.AWSJavaMailTransport --property mail.smtp.auth=true:mail.smtp.user=[aws_access_key]:mail.smtp.password=[aws_secret_key]:mail.transport.protocol=smtp:mail.smtp.port=587:mail.smtp.starttls.enable=true mail/notifyMailSession







Rebuilding Your Dev Environment

If you have an old copy of the database and old Solr data and want to start fresh, here are the recommended steps:


	drop your old database


	clear out your existing Solr index: scripts/search/clear


	run the installer script above - it will create the db, deploy the app, populate the db with reference data and run all the scripts that create the domain metadata fields. You no longer need to perform these steps separately.


	confirm you are using the latest Dataverse-specific Solr schema.xml


	confirm http://localhost:8080 is up


	If you want to set some dataset-specific facets, go to the root dataverse (or any dataverse; the selections can be inherited) and click “General Information” and make choices under “Select Facets”. There is a ticket to automate this: https://github.com/IQSS/dataverse/issues/619




You may also find https://github.com/IQSS/dataverse/blob/develop/scripts/deploy/phoenix.dataverse.org/deploy and related scripts interesting because they demonstrate how we have at least partially automated the process of tearing down a Dataverse installation and having it rise again, hence the name “phoenix.” See also “Fresh Reinstall” in the Installation section of the Installation Guide.




DataCite

If you are seeing Response code: 400, [url] domain of URL is not allowed it’s probably because your dataverse.siteUrl JVM option is unset or set to localhost (-Ddataverse.siteUrl=http://localhost:8080). You can try something like this:

./asadmin delete-jvm-options '-Ddataverse.siteUrl=http\://localhost\:8080'

./asadmin create-jvm-options '-Ddataverse.siteUrl=http\://demo.dataverse.org'



Previous: Tips | Next: Version Control







          

      

      

    





  

    
      
          
            
  
Version Control

The Dataverse Project uses git for version control and GitHub for hosting. On this page we’ll explain where to find the code, our branching strategey, advice on how to make a pull request, and other git tips.


Contents:


	Where to Find the Dataverse Code


	Branching Strategy


	Goals


	Branches


	The “master” Branch


	The “develop” Branch


	Feature Branches










	How to Make a Pull Request


	Find or Create a GitHub Issue


	Create a New Branch off the develop Branch


	Commit Your Change to Your New Branch


	Push Your Branch to GitHub


	Make a Pull Request


	Make Sure Your Pull Request Has Been Advanced to Code Review






	How to Resolve Conflicts in Your Pull Request


	Adding Commits to a Pull Request from a Fork







Where to Find the Dataverse Code

The main Dataverse code at https://github.com/IQSS/dataverse but as explained in the Introduction section under “Related Projects”, there are many other code bases you can hack on if you wish!




Branching Strategy


Goals

The goals of the Dataverse branching strategy are:


	allow for concurrent development


	only ship stable code




We follow a simplified “git flow” model described at http://nvie.com/posts/a-successful-git-branching-model/ involving a “master” branch, a “develop” branch, and feature branches such as “1234-bug-fix”.




Branches


The “master” Branch

The “master [https://github.com/IQSS/dataverse/tree/master]” branch represents released versions of Dataverse. As mentioned in the Making Releases section, at release time we update the master branch to include all the code for that release. Commits are never made directly to master. Rather, master is updated only when we merge code into it from the “develop” branch.




The “develop” Branch

The “develop [https://github.com/IQSS/dataverse]” branch represents code that was stable enough to merge from a “feature” branch (described below) and that will make it into the next release. Like master, commits are never made to the develop branch. The develop branch is where integration occurs. Your goal is have your code merged into the develop branch after it has been reviewed.




Feature Branches

Feature branches are used for both developing features and fixing bugs. They are named after the GitHub issue they are meant to address, so create a GitHub issue if you need to.

“3728-doc-apipolicy-fix” is an example of a fine name for your feature branch. It tells us that you are addressing https://github.com/IQSS/dataverse/issues/3728 and the “slug” is short, descriptive, and starts with the issue number.








How to Make a Pull Request

Pull requests take all shapes and sizes, from a one-character typo fix to hundreds of files changing at once. Generally speaking, smaller pull requests are better so that they are easier to code review. That said, don’t hold back on writing enough code or documentation to address the issue to the best of your ability.

If you are writing code (rather than documentation), please see Testing for guidance on writing tests.

The example of creating a pull request below has to do with fixing an important issue with the Documentation but applies to fixing code as well.


Find or Create a GitHub Issue

For guidance on which issue to work on, please ask! Also, see https://github.com/IQSS/dataverse/blob/develop/CONTRIBUTING.md

Let’s say you want to tackle https://github.com/IQSS/dataverse/issues/3728 which points out a typo in a page of Dataverse’s documentation.

If you tell us your GitHub username we are happy to add you to the “read only” team at https://github.com/orgs/IQSS/teams/dataverse-readonly/members so that we can assign the issue to you while you’re working on it. You can also tell us if you’d like to be added to the Dataverse Community Contributors spreadsheet [https://docs.google.com/spreadsheets/d/1o9DD-MQ0WkrYaEFTD5rF_NtyL8aUISgURsAXSL7Budk/edit?usp=sharing] and the Dev Efforts by the Dataverse Community spreadsheet [https://groups.google.com/d/msg/dataverse-community/X2diSWYll0w/ikp1TGcfBgAJ].




Create a New Branch off the develop Branch

Always create your feature branch from the latest code in develop, pulling the latest code if necessary. As mentioned above, your branch should have a name like “3728-doc-apipolicy-fix” that starts with the issue number you are addressing, and ends with a short, descriptive name. Dashes (“-“) and underscores (“_”) in your branch name are ok, but please try to avoid other special characters such as ampersands (“&”) than have special meaning in Unix shells.




Commit Your Change to Your New Branch

Making a commit (or several commits) to that branch. Ideally the first line of your commit message includes the number of the issue you are addressing, such as Fixed BlockedApiPolicy #3728.




Push Your Branch to GitHub

Push your feature branch to your fork of Dataverse. Your git command may look something like git push origin 3728-doc-apipolicy-fix.




Make a Pull Request

Make a pull request to get approval to merge your changes into the develop branch. Feedback on the pull request template we use is welcome! The “connects to #3728” syntax is important because it’s used at https://waffle.io/IQSS/dataverse to associate pull requests with issues.

Here’s an example of a pull request for issue #3728: https://github.com/IQSS/dataverse/pull/3827




Make Sure Your Pull Request Has Been Advanced to Code Review

Now that you’ve made your pull request, your goal is to make sure it appears in the “Code Review” column at https://waffle.io/IQSS/dataverse

Look at https://github.com/IQSS/dataverse/blob/master/CONTRIBUTING.md for various ways to reach out to developers who have enough access to the GitHub repo to move your issue and pull request to the “Code Review” column.






How to Resolve Conflicts in Your Pull Request

Unfortunately, pull requests can quickly become “stale” and unmergable as other pull requests are merged into the develop branch ahead of you. This is completely normal, and often occurs because other developers made their pull requests before you did.

The Dataverse team may ping you to ask you to merge the latest from the develop branch into your branch and resolve merge conflicts. If this sounds daunting, please just say so and we will assist you.

If you’d like to resolve the merge conflicts yourself, here are some steps to do so that make use of GitHub Desktop and Netbeans.

In GitHub Desktop:


	Sync from develop.


	Open the specific branch that’s having the merge conflict.


	Click “Update from develop”.




In Netbeans:


	Click Window -> Favorites and open your local Dataverse project folder in the Favorites panel.


	In this file browser, you can follow the red cylinder icon to find files with merge conflicts.


	Double click the red merge conflicted file.


	Right click on the red tab for that file and select Git -> Resolve Conflicts.


	Resolve on right or left (if you select “both” you can do finer edits after).


	Save all changes




In GitHub Desktop:


	Commit the merge (append issue number to end, e.g. #3728) and leave note about what was resolved.




In GitHub Issues:


	Leave a comment for the Dataverse team that you have resolved the merge conflicts.







Adding Commits to a Pull Request from a Fork

By default, when a pull request is made from a fork, “Allow edits from maintainers” is checked as explained at https://help.github.com/articles/allowing-changes-to-a-pull-request-branch-created-from-a-fork/

This is a nice feature of GitHub because it means that the core dev team for Dataverse can make small (or even large) changes to a pull request from a contributor to help the pull request along on its way to QA and being merged.

GitHub documents how to make changes to a fork at https://help.github.com/articles/committing-changes-to-a-pull-request-branch-created-from-a-fork/ but as of this writing the steps involve making a new clone of the repo. This works but you might find it more convenient to add a “remote” to your existing clone. The example below uses the fork at https://github.com/OdumInstitute/dataverse and the branch 4709-postgresql_96 but the technique can be applied to any fork and branch:

git remote add OdumInstitute git@github.com:OdumInstitute/dataverse.git
git fetch OdumInstitute
git checkout 4709-postgresql_96
vim path/to/file.txt
git commit
git push OdumInstitute 4709-postgresql_96







Previous: Troubleshooting | Next: SQL Upgrade Scripts







          

      

      

    





  

    
      
          
            
  
SQL Upgrade Scripts

The database schema for Dataverse is constantly evolving. As other developers make changes to the database schema you will need to keep up with these changes to have your development environment in working order. Additionally, as you make changes to the database schema, you must write SQL upgrade scripts when needed and communicate with your fellow developers about applying those scripts.


Contents:


	Location of SQL Upgrade Scripts


	How to Determine if You Need to Create or Update a SQL Upgrade Script


	How to Create or Update a SQL Upgrade Script


	Communicating the Need to Run SQL Updates







Location of SQL Upgrade Scripts

scripts/database/upgrades is the directory where we keep or SQL upgrade scripts.




How to Determine if You Need to Create or Update a SQL Upgrade Script

If you are creating a new database table (which maps to an @Entity in JPA), you do not need to create or update a SQL upgrade script. The reason for this is that we use create-tables in src/main/resources/META-INF/persistence.xml so that new tables are automatically created by Glassfish when you deploy your war file.

If you are doing anything other than creating a new database table such as adding a column to an existing table, you must create or update a SQL upgrade script.




How to Create or Update a SQL Upgrade Script

We assume you have already read the Version Control section and have been keeping your feature branch up to date with the “develop” branch.

First, check https://github.com/IQSS/dataverse/tree/develop/scripts/database/upgrades to see if a SQL upgrade script for the next release already exists. For example, if the current release is 4.9.4 and the next release will be 4.10, the script will be named upgrade_v4.9.4_to_v4.10.sql. If the script exists, just add your changes to the bottom of it.

If no SQL upgrade script exists, look at https://github.com/IQSS/dataverse/milestones to figure out the name of the next milestone and create a script using the naming convention above.

As with any task related to Dataverse development, if you need any help writing SQL upgrade scripts, please reach out using any of the channels mentioned under “Getting Help” in the Introduction section.

Please note that we are aware of the problem of merge conflicts in the SQL update script as well as how the next version number can change at any time. Please see the Making Releases section for how we are running an experiment having to do with release notes that might help inform an improvement of our process for developing SQL upgrade scripts.




Communicating the Need to Run SQL Updates

If you have made a pull request that contains SQL updates and that pull request is merged into the “develop” branch, you are responsible for communicating to other developers that when then pull the latest code from “develop” they must run your SQL updates. Post a message to the “dataverse-dev” mailing list at https://groups.google.com/forum/#!forum/dataverse-dev



Previous: Version Control | Next: Testing







          

      

      

    





  

    
      
          
            
  
Testing

In order to keep our codebase healthy, the Dataverse project encourages developers to write automated tests in the form of unit tests and integration tests. We also welcome ideas for how to improve our automated testing.


Contents:


	The Health of a Codebase


	Testing in Depth


	Unit Tests


	Unit Test Automation Overview


	Writing Unit Tests with JUnit


	Refactoring Code to Make It Unit-Testable


	Observing Changes to Code Coverage


	Testing Commands


	Running Non-Essential (Excluded) Unit Tests










	Integration Tests


	Running the full API test suite using Docker


	Getting Set Up to Run REST Assured Tests


	The Burrito Key


	Root Dataverse Permissions


	Publish Root Dataverse


	dataverse.siteUrl


	Identifier Generation






	Writing Integration Tests with REST Assured






	Measuring Coverage of Integration Tests


	Load/Performance Testing


	Locust


	download-files.sh script






	The Phoenix Server


	How the Phoenix Tests Work


	How to Run the Phoenix Tests


	List of Tests Run Against the Phoenix Server






	Future Work


	Future Work on Unit Tests


	Future Work on Integration Tests


	Browser-Based Testing


	Installation Testing


	Future Work on Load/Performance Testing











The Health of a Codebase

Before we dive into the nut and bolts of testing, let’s back up for a moment and think about why we write automated tests in the first place. Writing automated tests is an investment and leads to better quality software. Counterintuitively, writing tests and executing them regularly allows a project to move faster. Martin Fowler explains this well while talking about the health of a codebase:


“This is an economic judgment. Several times, many times, I run into teams that say something like, ‘Oh well. Management isn’t allowing us to do a quality job here because it will slow us down. And we’ve appealed to management and said we need to put more quality in the code, but they’ve said no, we need to go faster instead.’ And my comment to that is well, as soon as you’re framing it in terms of code quality versus speed, you’ve lost. Because the whole point of refactoring is to go faster.

“And this is why I quite like playing a bit more with the metaphor as the health of a codebase. If you keep yourself healthy then you’ll be able to run faster. But if you just say, ‘Well, I want to run a lot so I’m therefore going to run a whole load all the time and not eat properly and not pay attention about this shooting pain going up my leg,’ then you’re not going to be able to run quickly very long. You have to pay attention to your health. And same with the codebase. You have to continuously say, ‘How do we keep it in a healthy state? Then we can go fast,’ because we’re running marathons here with codebases. And if we neglect that internal quality of the codebase, it hits you surprisingly fast.”

—Martin Fowler at https://devchat.tv/ruby-rogues/178-rr-book-club-refactoring-ruby-with-martin-fowler







Testing in Depth

Security in depth [https://en.wikipedia.org/wiki/Defense_in_depth_(computing)] might mean that your castle has a moat as well as high walls. Likewise, when testing, you should consider testing a various layers of the stack using both unit tests and integration tests.

When writing tests, you may find it helpful to first map out which functions of your code you want to test, and then write a functional unit test for each which can later comprise a larger integration test.




Unit Tests

Creating unit tests for your code is a helpful way to test what you’ve built piece by piece.

Unit tests can be executed without runtime dependencies on PostgreSQL, Solr, or any other external system. They are the lowest level of testing and are executed constantly on developers’ laptops as part of the build process and via continous integration services in the cloud.

A unit test should execute an operation of your code in a controlled fashion. You must make an assertion of what the expected response gives back. It’s important to test optimistic output and assertions (the “happy path”), as well as unexpected input that leads to failure conditions. Know how your program should handle anticipated errors/exceptions and confirm with your test(s) that it does so properly.


Unit Test Automation Overview

We use a variety of tools to write, execute, and measure the code coverage of unit tests, including Maven, JUnit, Jacoco, GitHub, Travis, and Coveralls. We’ll explain the role of each tool below, but here’s an overview of what you can expect from the automation we’ve set up.

As you prepare to make a pull request, as described in the Version Control section, you will be working on a new branch you create from the “develop” branch. Let’s say your branch is called 1012-private-url. As you work, you are constantly invoking Maven to build the war file. When you do a “clean and build” in Netbeans, Maven runs all the unit tests (anything ending with Test.java) and the runs the results through a tool called Jacoco that calculates code coverage. When you push your branch to GitHub and make a pull request, a web service called Travis CI runs Maven and Jacoco on your branch and pushes the results to Coveralls, which is a web service that tracks changes to code coverage over time.

To make this more concrete, observe that https://github.com/IQSS/dataverse/pull/3111 has comments from a GitHub user called coveralls saying things like “Coverage increased (+0.5%) to 5.547% when pulling dd6ceb1 on 1012-private-url into be5b26e on develop.” Clicking on the comment should lead you to a URL such as https://coveralls.io/builds/7013870 which shows how code coverage has gone up or down. That page links to a page such as https://travis-ci.org/IQSS/dataverse/builds/144840165 which shows the build on the Travis side that pushed the results ton Coveralls.

The main takeaway should be that we care about unit testing enough to measure the changes to code coverage over time using automation. Now let’s talk about how you can help keep our code coverage up by writing unit tests with JUnit.




Writing Unit Tests with JUnit

We are aware that there are newer testing tools such as TestNG, but we use JUnit [http://junit.org] because it’s tried and true.

If writing tests is new to you, poke around existing unit tests which all end in Test.java and live under src/test. Each test is annotated with @Test and should have at least one assertion which specifies the expected result. In Netbeans, you can run all the tests in it by clicking “Run” -> “Test File”. From the test file, you should be able to navigate to the code that’s being tested by right-clicking on the file and clicking “Navigate” -> “Go to Test/Tested class”. Likewise, from the code, you should be able to use the same “Navigate” menu to go to the tests.

NOTE: Please remember when writing tests checking possibly localized outputs to check against en_US.UTF-8 and UTC
l10n strings!


Refactoring Code to Make It Unit-Testable

Existing code is not necessarily written in a way that lends itself to easy testing. Generally speaking, it is difficult to write unit tests for both JSF “backing” beans (which end in Page.java) and “service” beans (which end in Service.java) because they require the database to be running in order to test them. If service beans can be exercised via API they can be tested with integration tests (described below) but a good technique for making the logic testable it to move code to “util beans” (which end in Util.java) that operate on Plain Old Java Objects (POJOs). PrivateUrlUtil.java is a good example of moving logic from PrivateUrlServiceBean.java to a “util” bean to make the code testable.




Observing Changes to Code Coverage

Once you’ve written some tests, you’re probably wondering how much you’ve helped to increase the code coverage. In Netbeans, do a “clean and build.” Then, under the “Projects” tab, right-click “dataverse” and click “Code Coverage” -> “Show Report”. For each Java file you have open, you should be able to see the percentage of code that is covered by tests and every line in the file should be either green or red. Green indicates that the line is being exercised by a unit test and red indicates that it is not.

In addition to seeing code coverage in Netbeans, you can also see code coverage reports by opening target/site/jacoco/index.html in your browser.




Testing Commands

You might find studying the following test classes helpful in writing tests for commands:


	CreatePrivateUrlCommandTest.java


	DeletePrivateUrlCommandTest.java


	GetPrivateUrlCommandTest.java




In addition, there is a writeup on “The Testable Command” at https://github.com/IQSS/dataverse/blob/develop/doc/theTestableCommand/TheTestableCommand.md .




Running Non-Essential (Excluded) Unit Tests

You should be aware that some unit tests have been deemed “non-essential” and have been annotated with @Category(NonEssentialTests.class) and are excluded from the “dev” Maven profile, which is the default profile. All unit tests (that have not been annotated with @Ignore), including these non-essential tests, are run from continuous integration systems such as Jenkins and Travis CI with the following mvn command that invokes a non-default profile:

mvn test -P all-unit-tests

Typically https://travis-ci.org/IQSS/dataverse will show a higher number of unit tests executed because it uses the profile above.

Generally speaking, unit tests have been flagged as non-essential because they are slow or because they require an Internet connection. You should not feel obligated to run these tests continuously but you can use the mvn command above to run them. To iterate on the unit test in Netbeans and execute it with “Run -> Test File”, you must temporarily comment out the annotation flagging the test as non-essential.








Integration Tests

Unit tests are fantastic for low level testing of logic but aren’t especially real-world-applicable because they do not exercise Dataverse as it runs in production with a database and other runtime dependencies. We test in-depth by also writing integration tests to exercise a running system.

Unfortunately, the term “integration tests” can mean different things to different people. For our purposes, an integration test has the following qualities:


	Integration tests exercise Dataverse APIs.


	Integration tests are not automatically on developers’ laptops.


	Integration tests operate on an installation of Dataverse that is running and able to talk to both PostgreSQL and Solr.


	Integration tests are written using REST Assured.





Running the full API test suite using Docker

To run the full suite of integration tests on your laptop, we recommend using the “all in one” Docker configuration described in conf/docker-aio/readme.txt in the root of the repo.

Alternatively, you can run tests against Glassfish running on your laptop by following the “getting set up” steps below.




Getting Set Up to Run REST Assured Tests

Unit tests are run automatically on every build, but dev environments and servers require special setup to run REST Assured tests. In short, Dataverse needs to be placed into an insecure mode that allows arbitrary users and datasets to be created and destroyed. This differs greatly from the out-of-the-box behavior of Dataverse, which we strive to keep secure for sysadmins installing the software for their institutions in a production environment.

The Development Environment section currently refers developers here for advice on getting set up to run REST Assured tests, but we’d like to add some sort of “dev” flag to the installer to put Dataverse in “insecure” mode, with lots of scary warnings that this dev mode should not be used in production.

The instructions below assume a relatively static dev environment on a Mac. There is a newer “all in one” Docker-based approach documented in the Docker, Kubernetes, and OpenShift section under “Docker” that you may like to play with as well.


The Burrito Key

For reasons that have been lost to the mists of time, Dataverse really wants you to to have a burrito. Specifically, if you’re trying to run REST Assured tests and see the error “Dataverse config issue: No API key defined for built in user management”, you must run the following curl command (or make an equivalent change to your database):

curl -X PUT -d 'burrito' http://localhost:8080/api/admin/settings/BuiltinUsers.KEY

Without this “burrito” key in place, REST Assured will not be able to create users. We create users to create objects we want to test, such as dataverses, datasets, and files.




Root Dataverse Permissions

In your browser, log in as dataverseAdmin (password: admin) and click the “Edit” button for your root dataverse. Navigate to Permissions, then the Edit Access button. Under “Who can add to this dataverse?” choose “Anyone with a dataverse account can add sub dataverses” if it isn’t set to this already.

Alternatively, this same step can be done with this script: scripts/search/tests/grant-authusers-add-on-root




Publish Root Dataverse

The root dataverse must be published for some of the REST Assured tests to run.




dataverse.siteUrl

When run locally (as opposed to a remote server), some of the REST Assured tests require the dataverse.siteUrl JVM option to be set to http://localhost:8080. See “JVM Options” under the Configuration section of the Installation Guide for advice changing JVM options. First you should check to check your JVM options with:

./asadmin list-jvm-options | egrep 'dataverse|doi'

If dataverse.siteUrl is absent, you can add it with:

./asadmin create-jvm-options "-Ddataverse.siteUrl=http\://localhost\:8080"




Identifier Generation

DatasetsIT.java exercises the feature where the “identifier” of a DOI can be a digit and requires a sequence to be added to your database.  See :IdentifierGenerationStyle under the Configuration section for adding this sequence to your installation of PostgreSQL.






Writing Integration Tests with REST Assured

Before writing any new REST Assured tests, you should get the tests to pass in an existing REST Assured test file. BuiltinUsersIT.java is relatively small and requires less setup than other test files.

You do not have to reinvent the wheel. There are many useful methods you can call in your own tests – especially within UtilIT.java – when you need your test to create and/or interact with generated accounts, files, datasets, etc. Similar methods can subsequently delete them to get them out of your way as desired before the test has concluded.

For example, if you’re testing your code’s operations with user accounts, the method UtilIT.createRandomUser(); can generate an account for your test to work with. The same account can then be deleted by your program by calling the UtilIT.deleteUser(); method on the imaginary friend your test generated.

Remember, it’s only a test (and it’s not graded)! Some guidelines to bear in mind:


	Map out which logical functions you want to test


	Understand what’s being tested and ensure it’s repeatable


	Assert the conditions of success / return values for each operation
* A useful resource would be HTTP status codes [http://www.restapitutorial.com/httpstatuscodes.html]


	Let the code do the labor; automate everything that happens when you run your test file.


	Just as with any development, if you’re stuck: ask for help!




To execute existing integration tests on your local Dataverse, a helpful command line tool to use is Maven [http://maven.apache.org/ref/3.1.0/maven-embedder/cli.html]. You should have Maven installed as per the Development Environment [http://guides.dataverse.org/en/latest/developers/dev-environment.html] guide, but if not it’s easily done via Homebrew: brew install maven.

Once installed, you may run commands with mvn [options] [<goal(s)>] [<phase(s)>].


	If you want to run just one particular API test, it’s as easy as you think:

mvn test -Dtest=FileRecordJobIT



	To run more than one test at a time, separate by commas:

mvn test -Dtest=FileRecordJobIT,ConfirmEmailIT



	To run any test(s) on a particular domain, replace localhost:8080 with desired domain name:

mvn test -Dtest=FileMetadataIT -Ddataverse.test.baseurl='http://localhost:8080'





To see the full list of tests used by the Docker option mentioned above, see run-test-suite.sh.






Measuring Coverage of Integration Tests

Measuring the code coverage of integration tests with jacoco requires several steps:


	Instrument the WAR file. Using an approach similar to this script is probably preferable to instrumenting the WAR directly (at least until the nu.xom.UnicodeUtil.decompose method too large exceptions get sorted).


	Deploy the WAR file to a glassfish server with jacocoagent.jar in glassfish4/glassfish/lib/


	Run integration tests as usual


	Use glassfish4/glassfish/domains/domain1/config/jacoco.exec to generate a report: java -jar ${JACOCO_HOME}/jacococli.jar report --classfiles ${DV_REPO}/target/classes --sourcefiles ${DV_REPO}/src/main/java --html ${DV_REPO}/target/coverage-it/ jacoco.exec




The same approach could be used to measure code paths exercised in normal use (by substituting the “run integration tests” step).
There is obvious potential to improve automation of this process.




Load/Performance Testing


Locust

Load and performance testing is conducted on an as-needed basis but we’re open to automating it. As of this writing Locust ( https://locust.io ) scripts at https://github.com/IQSS/dataverse-helper-scripts/tree/master/src/stress_tests have been used.




download-files.sh script

One way of generating load is by downloading many files. You can download download-files.sh, make it executable (chmod 755), and run it with --help. You can use -b to specify the base URL of the Dataverse installation and -s to specify the number of seconds to wait between requests like this:

./download-files.sh -b https://dev1.dataverse.org -s 2

The script requires a file called files.txt to operate and database IDs for the files you want to download should each be on their own line.






The Phoenix Server


How the Phoenix Tests Work

A server at http://phoenix.dataverse.org has been set up to test the latest code from the develop branch. Testing is done using chained builds of Jenkins jobs:


	A war file is built from the latest code in develop: https://build.hmdc.harvard.edu:8443/job/phoenix.dataverse.org-build-develop/


	The resulting war file is depoyed to the Phoenix server: https://build.hmdc.harvard.edu:8443/job/phoenix.dataverse.org-deploy-develop/


	REST Assured Tests are run across the wire from the Jenkins server to the Phoenix server:  https://build.hmdc.harvard.edu:8443/job/phoenix.dataverse.org-apitest-develop/







How to Run the Phoenix Tests


	Take a quick look at http://phoenix.dataverse.org to make sure the server is up and running Dataverse. If it’s down, fix it.


	Log into Jenkins and click “Build Now” at https://build.hmdc.harvard.edu:8443/job/phoenix.dataverse.org-build-develop/


	Wait for all three chained Jenkins jobs to complete and note if they passed or failed. If you see a failure, open a GitHub issue or at least get the attention of some developers.







List of Tests Run Against the Phoenix Server

We haven’t thought much about a good way to publicly list the “IT” classes that are executed against the phoenix server. (Currently your best bet is to look at the Executing Maven line at the top of the “Full Log” of “Console Output” of phoenix.dataverse.org-apitest-develop Jenkins job mentioned above.) We endeavor to keep the list of tests in the “all-in-one” Docker environment described above in sync with the list of tests configured in Jenkins. That is to say, refer to run-test-suite.sh mentioned in conf/docker-aio/readme.txt for the current list of IT tests that are expected to pass. Here’s a dump of that file:

#!/bin/sh
# This is the canonical list of which "IT" tests are expected to pass.

dvurl=$1
if [ -z "$dvurl" ]; then
	dvurl="http://localhost:8084"
fi

# Please note the "dataverse.test.baseurl" is set to run for "all-in-one" Docker environment.
# TODO: Rather than hard-coding the list of "IT" classes here, add a profile to pom.xml.
mvn test -Dtest=DataversesIT,DatasetsIT,SwordIT,AdminIT,BuiltinUsersIT,UsersIT,UtilIT,ConfirmEmailIT,FileMetadataIT,FilesIT,SearchIT,InReviewWorkflowIT,HarvestingServerIT,MoveIT -Ddataverse.test.baseurl=$dvurl










Future Work

We’d like to make improvements to our automated testing. See also ‘this thread from our mailing list <https://groups.google.com/forum/#!topic/dataverse-community/X8OrRWbPimA>’_ asking for ideas from the community, and discussion at ‘this GitHub issue. <https://github.com/IQSS/dataverse/issues/2746>’_


Future Work on Unit Tests


	Review pull requests from @bencomp for ideas for approaches to testing: https://github.com/IQSS/dataverse/pulls?q=is%3Apr+author%3Abencomp


	Come up with a way to test commands: http://irclog.iq.harvard.edu/dataverse/2015-11-04#i_26750


	Test EJBs using Arquillian, embedded Glassfish, or similar. @bmckinney kicked the tires on Arquillian at https://github.com/bmckinney/bio-dataverse/commit/2f243b1db1ca704a42cd0a5de329083763b7c37a







Future Work on Integration Tests


	Automate testing of the Python client: https://github.com/IQSS/dataverse-client-python/issues/10


	Work with @leeper on testing the R client: https://github.com/IQSS/dataverse-client-r


	Review and attempt to implement “API Test Checklist” from @kcondon at https://docs.google.com/document/d/199Oq1YwQ4pYCguaeW48bIN28QAitSk63NbPYxJHCCAE/edit?usp=sharing


	Attempt to use @openscholar approach for running integration tests using Travis https://github.com/openscholar/openscholar/blob/SCHOLAR-3.x/.travis.yml (probably requires using Ubuntu rather than CentOS)


	Generate code coverage reports for integration tests: https://github.com/pkainulainen/maven-examples/issues/3 and http://www.petrikainulainen.net/programming/maven/creating-code-coverage-reports-for-unit-and-integration-tests-with-the-jacoco-maven-plugin/


	Consistent logging of API Tests. Show test name at the beginning and end and status codes returned.


	expected passing and known/expected failing integration tests: https://github.com/IQSS/dataverse/issues/4438







Browser-Based Testing


	Revisit Selenium/Open Sauce: https://github.com/IQSS/dataverse/commit/8a26404 and https://saucelabs.com/u/esodvn and https://saucelabs.com/u/wdjs and http://sauceio.com/index.php/2013/05/a-browser-matrix-widget-for-the-open-source-community/







Installation Testing


	Run vagrant up on a server to test the installer: http://guides.dataverse.org/en/latest/developers/tools.html#vagrant . We haven’t been able to get this working in Travis: https://travis-ci.org/IQSS/dataverse/builds/96292683 . Perhaps it would be possible to use AWS as a provider from Vagrant judging from https://circleci.com/gh/critical-alert/circleci-vagrant/6 .


	Work with @lwo to automate testing of https://github.com/IQSS/dataverse-puppet . Consider using Travis: https://github.com/IQSS/dataverse-puppet/issues/10


	Work with @donsizemore to automate testing of https://github.com/IQSS/dataverse-ansible with Travis or similar.







Future Work on Load/Performance Testing


	Clean up and copy stress tests code, config, and docs into main repo from https://github.com/IQSS/dataverse-helper-scripts/tree/master/src/stress_tests


	Marcel Duran created a command-line wrapper for the WebPagetest API that can be used to test performance in your continuous integration pipeline (TAP, Jenkins, Travis-CI, etc): https://github.com/marcelduran/webpagetest-api/wiki/Test-Specs#jenkins-integration


	Create top-down checklist, building off the “API Test Coverage” spreadsheet at https://github.com/IQSS/dataverse/issues/3358#issuecomment-256400776






Previous: SQL Upgrade Scripts | Next: Documentation









          

      

      

    





  

    
      
          
            
  
Documentation


Contents:


	Quick Fix


	Other Changes (Sphinx)


	Installing Sphinx


	Using Sphinx






	Table of Contents


	Images


	GraphViz based images






	Versions







Quick Fix

If you find a typo or a small error in the documentation you can easily fix it using GitHub.


	Fork the repository


	Go to [your GitHub username]/dataverse/doc/sphinx-guides/source and access the file you would like to fix


	Switch to the branch that is currently under development


	Click the Edit button in the upper-right corner and fix the error


	Submit a pull request







Other Changes (Sphinx)

The documentation for Dataverse was written using Sphinx (http://sphinx-doc.org/).
If you are interested in suggesting changes or updates we recommend that you create
the html files using Sphinx locally and the submit a pull request through GitHub. Here are the instructions on how to proceed:


Installing Sphinx

On a Mac:

Download the sphinx zip file from http://sphinx-doc.org/install.html

Unzip it somewhere. In the unzipped directory, do the following as
root, (sudo -i):

python setup.py build
python setup.py install

Alternative option (Mac/Unix/Windows):

Unless you already have it, install pip (https://pip.pypa.io/en/latest/installing.html)

run pip install sphinx in a terminal

This is all you need. You should now be able to build HTML/pdf documentation from git sources locally.




Using Sphinx

First, you will need to make a fork of the dataverse repository in GitHub. Then, you will need to make a clone of your fork so you can manipulate the files outside GitHub.

To edit the existing documentation go to ~/dataverse/doc/sphinx-guides/source directory inside your clone. There, you will find the .rst files that correspond to the guides in the dataverse page (http://guides.dataverse.org/en/latest/user/index.html). Now, using your preferred text editor, open and edit these files, or create new .rst files and edit the others accordingly.

Once you are done, open a terminal and change directories to ~/dataverse/doc/sphinx-guides . Then, run the following commands:


	make clean


	make html




After sphinx is done processing the files you should notice that the html folder in ~/dataverse/doc/sphinx-guides/build directory has been updated.
You can click on the files in the html folder to preview the changes.

Now you can make a commit with the changes to your own fork in GitHub and submit a pull request to the dataverse repository.






Table of Contents

Every non-index page should use the following code to display a table of contents of internal sub-headings:

.. contents:: |toctitle|
        :local:





This code should be placed below any introductory text/images and directly above the first subheading, much like a Wikipedia page.




Images

A good documentation is just like a website enhanced and upgraded by adding high quality and self-explanatory images.
Often images depict a lot of written text in a simple manner. Within our Sphinx docs, you can add them in two ways: a) add a
PNG image directly and include or b) use inline description languages like GraphViz (current only option).

While PNGs in the git repo can be linked directly via URL, Sphinx-generated images do not need a manual step and might
provide higher visual quality. Especially in terms of quality of content, generated images can be extendend and improved
by a textbased and reviewable commit, without needing raw data or source files and no diff around.


GraphViz based images

In some parts of the documentation, graphs are rendered as images via Sphinx GraphViz extension.

This requires GraphViz [http://graphviz.org/] installed and either dot on the path or
adding options to the make call [https://groups.google.com/forum/#!topic/sphinx-users/yXgNey_0M3I].

This has been tested and works on Mac, Linux, and Windows. If you have not properly configured GraphViz, then the worst thing that might happen is a warning and missing images in your local documentation build.






Versions

For installations hosting their own copies of the guides, note that as each version of Dataverse is released, there is an updated version of the guides released with it. Google and other search engines index all versions, which may confuse users who discover your guides in the search results as to which version they should be looking at. When learning about your installation from the search results, it is best to be viewing the latest version.

In order to make it clear to the crawlers that we only want the latest version discoverable in their search results, we suggest adding this to your robots.txt file:

User-agent: *
Allow: /en/latest/
Disallow: /en/







Previous: Testing | Next: Dependency Management







          

      

      

    





  

    
      
          
            
  
Dependency Management


Contents:


	Terms


	Direct dependencies


	Transitive dependencies


	Managing transitive dependencies in pom.xml






	Helpful tools


	Repositories






Dataverse is (currently) a Java EE 7 based application, that uses a lot of additional libraries for special purposes.
This includes features like support for SWORD-API, S3 storage and many others.

Besides the code that glues together the single pieces, any developer needs to describe used dependencies for the
Maven-based build system. As is familiar to any Maven user, this happens inside the “Project Object Model” (POM) living in
pom.xml at the root of the project repository. Recursive and convergent dependency resolution makes dependency
management with Maven very easy. But sometimes, in projects with many complex dependencies like Dataverse, you have
to help Maven make the right choices.


Terms

As a developer, you should familiarize yourself with the following terms:


	Direct dependencies: things you use yourself in your own code for Dataverse.


	Transitive dependencies: things others use for things you use, pulled in recursively.
See also: Maven docs [https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Transitive_Dependencies].




[image: digraph {     rankdir="LR";     node [fontsize=10]      yc [label="Your Code"]     da [label="Direct Dependency A"]     db [label="Direct Dependency B"]     ta [label="Transitive Dependency TA"]     tb [label="Transitive Dependency TB"]     tc [label="Transitive Dependency TC"]     dtz [label="Direct/Transitive Dependency Z"]      yc -> da -> ta;     yc -> db -> tc;     da -> tb -> tc;     db -> dtz;     yc -> dtz; }]



Direct dependencies

Within the POM, any direct dependencies reside within the <dependencies> tag:

<dependencies>
    <dependency>
        <groupId>org.example</groupId>
        <artifactId>example</artifactId>
        <version>1.1.0</version>
        <scope>compile</scope>
    </dependency>
</dependencies>





Anytime you add a <dependency>, Maven will try to fetch it from defined/configured repositories and use it
within the build lifecycle. You have to define a <version>, but <scope> is optional for compile.
(See Maven docs: Dep. Scope [https://maven.apache.org/guides/introduction/introduction-to-dependency-mechanism.html#Dependency_Scope])

During fetching, Maven will analyse all transitive dependencies (see graph above) and, if necessary, fetch those, too.
Everything downloaded once is cached locally by default, so nothing needs to be fetched again and again, as long as the
dependency definition does not change.

Rules to follow:


	You should only use direct dependencies for things you are actually using in your code.


	Clean up direct dependencies no longer in use. It will bloat the deployment package otherwise!


	Care about the scope. Do not include “testing only” dependencies in the package - it will hurt you in IDEs and bloat things. 1


	Avoid using different dependencies for the same purpose, e. g. different JSON parsing libraries.


	Refactor your code to use Java EE standards as much as possible.


	When you rely on big SDKs or similar big cool stuff, try to include the smallest portion possible. Complete SDK
bundles are typically heavyweight and most of the time unnecessary.


	Don’t include transitive dependencies. 2


	Exception: if you are relying on it in your code (see Z in the graph above), you must declare it. See below
for proper handling in these (rare) cases.











Transitive dependencies

Maven is comfortable for developers; it handles recursive resolution, downloading, and adding “dependencies of dependencies”.
However, as life is a box of chocolates, you might find yourself in version conflict hell sooner than later without even
knowing, but experiencing unintended side effects.

When you look at the graph above, imagine B and TB rely on different versions of TC. How does Maven decide
which version it will include? Easy: the dependent version of the nearest version wins:

[image: digraph {     rankdir="LR";     node [fontsize=10]      yc [label="Your Code"]     db [label="Direct Dependency B"]     dtz1 [label="Z v1.0"]     dtz2 [label="Z v2.0"]      yc -> db -> dtz1;     yc -> dtz2; }]
In this case, version “2.0” will be included. If you know something about semantic versioning, a red alert should ring in your mind right now.
How do we know that B is compatible with Z v2.0 when depending on Z v1.0?

Another scenario getting us in trouble: indirect use of transitive dependencies. Imagine the following: we rely on Z
in our code, but do not include a direct dependency for it within the POM. Now B is updated and removed its dependency
on Z. You definitely don’t want to head down that road.

Follow the rules to be safe:


	Do not use transitive deps implicit: add a direct dependency for transitive deps you re-use in your code.


	On every build check that no implicit usage was added by accident.


	Explicitly declare versions of transitive dependencies in use by multiple direct dependencies.


	On every build check that there are no convergence problems hiding in the shadows.


	Do special tests on every build to verify these explicit combinations work.





Managing transitive dependencies in pom.xml

Maven can manage versions of transitive dependencies in four ways:


	Make a transitive-only dependency not used in your code a direct one and add a <version> tag.
Typically a bad idea, don’t do that.


	Use <optional> or <exclusion> tags on direct dependencies that request the transitive dependency.
Last resort, you really should avoid this. Not explained or used here.
See Maven docs [https://maven.apache.org/guides/introduction/introduction-to-optional-and-excludes-dependencies.html].


	Explicitly declare the transitive dependency in <dependencyManagement> and add a <version> tag.


	For more complex transitive dependencies, reuse a “Bill of Materials” (BOM) within <dependencyManagement>
and add a <version> tag. Many bigger and standard use projects provide those, making the POM much less bloated
compared to adding every bit yourself.




A reduced example, only showing bits relevant to the above cases and usage of an explicit transitive dep directly:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

	<properties>
    <aws.version>1.11.172</aws.version>
    <!-- We need to ensure that our choosen version is compatible with every dependency relying on it.
         This is manual work and needs testing, but a good investment in stability and up-to-date dependencies. -->
    <jackson.version>2.9.6</jackson.version>
    <joda.version>2.10.1</joda.version>
</properties>

<!-- Transitive dependencies, bigger library "bill of materials" (BOM) and
     versions of dependencies used both directly and transitive are managed here. -->
<dependencyManagement>
    <dependencies>
        <!-- First example for case 4. Only one part of the SDK (S3) is used and transitive deps
             of that are again managed by the upstream BOM. -->
        <dependency>
            <groupId>com.amazonaws</groupId>
            <artifactId>aws-java-sdk-bom</artifactId>
            <version>${aws.version}</version>
            <type>pom</type>
            <scope>import</scope>
        </dependency>
        <!-- Second example for case 4 and an example for explicit direct usage of a transitive dependency.
             Jackson is used by AWS SDK and others, but we also use it in Dataverse. -->
        <dependency>
            <groupId>com.fasterxml.jackson</groupId>
            <artifactId>jackson-bom</artifactId>
            <version>${jackson.version}</version>
            <scope>import</scope>
            <type>pom</type>
        </dependency>
        <!-- Example for case 3. Joda is not used in Dataverse (as of writing this). -->
        <dependency>
            <groupId>joda-time</groupId>
            <artifactId>joda-time</artifactId>
            <version>${joda.version}</version>
        </dependency>
    </dependencies>
</dependencyManagement>

<!-- Declare any DIRECT dependencies here.
     In case the depency is both transitive and direct (e. g. some common lib for logging),
     manage the version above and add the direct dependency here WITHOUT version tag, too.
-->
<dependencies>
    <dependency>
        <groupId>com.amazonaws</groupId>
        <artifactId>aws-java-sdk-s3</artifactId>
        <!-- no version here as managed by BOM above! -->
    </dependency>
    <!-- Should be refactored and removed once on Java EE 8 -->
    <dependency>
        <groupId>com.fasterxml.jackson.core</groupId>
        <artifactId>jackson-core</artifactId>
        <!-- no version here as managed above! -->
    </dependency>
    <!-- Should be refactored and removed once on Java EE 8 -->
    <dependency>
        <groupId>com.fasterxml.jackson.core</groupId>
        <artifactId>jackson-databind</artifactId>
        <!-- no version here as managed above! -->
    </dependency>
</dependencies>












Helpful tools

Maven provides some plugins that are of great help to detect possible conflicts and implicit usage.

For implicit usage detection, use mvn dependency:analyze. Examine the output with great care. Sometimes you will
see implicit usages that do no harm, especially if you are using bigger SDKs having some kind of core package.
This will also report on any direct dependency which is not in use and can be removed from the POM. Again, do this with
great caution and double check.

If you want to see the dependencies both direct and transitive in a dependency tree format, use mvn dependency:tree.

This will however not help you with detecting possible version conflicts. For this you need to use the Enforcer Plugin [https://maven.apache.org/enforcer/maven-enforcer-plugin/index.html] with its built in dependency convergence rule [https://maven.apache.org/enforcer/enforcer-rules/dependencyConvergence.html].




Repositories

Maven receives all dependencies from repositories. Those can be public like Maven Central [https://search.maven.org/]
and others, but you can also use a private repository on premises or in the cloud. Last but not least, you can use
local repositories, which can live next to your application code (see local_lib dir within Dataverse codebase).

Repositories are defined within the Dataverse POM like this:

<repositories>
    <repository>
        <id>central-repo</id>
        <name>Central Repository</name>
        <url>http://repo1.maven.org/maven2</url>
        <layout>default</layout>
    </repository>
    <repository>
        <id>prime-repo</id>
        <name>PrimeFaces Maven Repository</name>
        <url>http://repository.primefaces.org</url>
        <layout>default</layout>
    </repository>
    <repository>
        <id>dvn.private</id>
        <name>Local repository for hosting jars not available from network repositories.</name>
        <url>file://${project.basedir}/local_lib</url>
    </repository>
</repositories>





You can also add repositories to your local Maven settings, see docs [https://maven.apache.org/ref/3.6.0/maven-settings/settings.html].

Typically you will skip the addition of the central repository, but adding it to the POM has the benefit that
dependencies are first looked up there (which in theory can speed up downloads). You should keep in mind that repositories
are used in the order they appear.



Footnotes


	1

	Modern IDEs import your Maven POM and offer import autocompletion for classes based on direct dependencies in the model. You might end up using legacy or repackaged classes because of a wrong scope.



	2

	This is going to bite back in modern IDEs when importing classes from transitive dependencies by “autocompletion accident”.







Previous: Documentation | Next: Debugging







          

      

      

    





  

    
      
          
            
  
Debugging


Contents:


	Logging







Logging

By default, Glassfish logs at the “INFO” level but logging can be increased to “FINE” on the fly with (for example) ./asadmin set-log-levels edu.harvard.iq.dataverse.api.Datasets=FINE. Running ./asadmin list-log-levels will show the current logging levels.



Previous: Documentation | Next: Coding Style







          

      

      

    





  

    
      
          
            
  
Coding Style

Like all development teams, the Dataverse developers at IQSS [https://dataverse.org/about] have their habits and styles when it comes to writing code. Let’s attempt to get on the same page. :)


Contents:


	Java


	Formatting Code


	Tabs vs. Spaces


	Braces Placement


	Format Code You Changed with Netbeans


	Checking Your Formatting With Checkstyle






	Logging


	Avoid Hard-Coding Strings


	Type Safety






	Bash


	Formatting Code


	Tabs vs. Spaces










	Bike Shedding







Java


Formatting Code


Tabs vs. Spaces

Don’t use tabs. Use 4 spaces.




Braces Placement

Place curly braces according to the style below, which is an example you can see from Netbeans.

public class ClassA {

    private String letters[] = new String[]{"A", "B"};

    public int meth(String text, int number) {
        BinaryOperator plus = (a, b) -> {
            return a + b;
        };
        if (text != null) {
            try {
                meth("Some text", text.length());
            } catch (Throwable t) {
            } finally {
            }
        } else if (number >= 0) {
            text = number == 0 ? "empty" : "nonempty";
        }
        do {
            number = number + 1;
        } while (number < 2);
        for (int i = 1; i < 100; i++) {
            number = number + i;
        }
        while (number > 0) {
            number--;
        }
    }
}








Format Code You Changed with Netbeans

As you probably gathered from the Development Environment section, IQSS has standardized on Netbeans. It is much appreciated when you format your code (but only the code you touched!) using the out-of-the-box Netbeans configuration. If you have created an entirely new Java class, you can just click Source -> Format. If you are adjusting code in an existing class, highlight the code you changed and then click Source -> Format. Keeping the “diff” in your pull requests small makes them easier to code review.




Checking Your Formatting With Checkstyle

The easiest way to adopt Dataverse coding style is to use Netbeans as your IDE, avoid change the default Netbeans formatting settings, and only reformat code you’ve changed, as described above.

If you do not use Netbeans, you are encouraged to check the formatting of your code using Checkstyle.

To check the entire project:

mvn checkstyle:checkstyle

To check a single file:

mvn checkstyle:checkstyle -Dcheckstyle.includes=**\/SystemConfig*.java






Logging

We have adopted a pattern where the top of every class file has a line like this:

private static final Logger logger = Logger.getLogger(DatasetUtil.class.getCanonicalName());





Use this logger field with varying levels such as fine or info like this:

logger.fine("will get thumbnail from dataset logo");





Generally speaking you should use fine for everything that you don’t want to show up in Glassfish’s server.log file by default. If you use a higher level such as info for common operations, you will probably hear complaints that your code is too “chatty” in the logs. These logging levels can be controlled at runtime both on your development machine and in production as explained in the Debugging section.

When adding logging, do not simply add System.out.println() lines because the logging level cannot be controlled.




Avoid Hard-Coding Strings

Special strings should be defined as public constants. For example, DatasetFieldConstant.java contains a field for “title” and it’s used in many places in the code (try “Find Usages” in Netbeans). This is better than writing the string “title” in all those places.




Type Safety

If you just downloaded Netbeans and are using the out-of-the-box settings, you should be in pretty good shape. Unfortunately, the default configuration of Netbeans doesn’t warn you about type-safety problems you may be inadvertently introducing into the code. To see these warnings, click Netbeans -> Preferences -> Editor -> Hints and check the following:


	“Raw Types” under “Standard Javac Warnings”




If you know of a way to easily share Netbeans configuration across a team, please get in touch.






Bash

Generally, Google’s Shell Style Guide at https://google.github.io/styleguide/shell.xml seems to have good advice.


Formatting Code


Tabs vs. Spaces

Don’t use tabs. Use 2 spaces.

shfmt from https://github.com/mvdan/sh seems like a decent way to enforce indentation of two spaces (i.e. shfmt -i 2 -w path/to/script.sh) but be aware that it makes other changes.








Bike Shedding

What color should the bike shed [https://en.wiktionary.org/wiki/bikeshedding] be? :)

Come debate with us about coding style in this Google doc that has public comments enabled: https://docs.google.com/document/d/1KTd3FpM1BI3HlBofaZjMmBiQEJtFf11jiiGpQeJzy7A/edit?usp=sharing



Previous: Debugging | Next: Deployment







          

      

      

    





  

    
      
          
            
  
Deployment

Developers often only deploy Dataverse to their Development Environment but it can be useful to deploy Dataverse to cloud services such as Amazon Web Services (AWS).


Contents:


	Deploying Dataverse to Amazon Web Services (AWS)


	Install AWS CLI


	Troubleshooting “aws: command not found”






	Configure AWS CLI


	Configure ~/.dataverse/ec2.env


	Download and Run the “Create Instance” Script


	Caveats











Deploying Dataverse to Amazon Web Services (AWS)

We have written scripts to deploy Dataverse to Amazon Web Services (AWS) but they require some setup.


Install AWS CLI

First, you need to have AWS Command Line Interface (AWS CLI) installed, which is called aws in your terminal. Launching your terminal and running the following command to print out the version of AWS CLI will tell you if it is installed or not:

aws --version

If you have not yet installed AWS CLI you should install it by following the instructions at https://docs.aws.amazon.com/cli/latest/userguide/installing.html

Afterwards, you should re-run the “version” command above to verify that AWS CLI has been properly installed. If “version” still doesn’t work, read on for troubleshooting advice. If “version” works, you can skip down to the “Configure AWS CLI” step.


Troubleshooting “aws: command not found”

Please note that as of this writing the AWS docs are not especially clear about how to fix errors such as aws: command not found. If the AWS CLI cannot be found after you followed the AWS installation docs, it is very likely that the aws program is not in your $PATH. $PATH is an “environment variable” that tells your shell (usually Bash) where to look for programs.

To see what $PATH is set to, run the following command:

echo $PATH

On Mac, to update your $PATH to include the location where the current AWS docs install AWS CLI on the version of Python included with your Mac, run the following command:

export PATH=$PATH:$HOME/Library/Python/2.7/bin

After all this, you can try the “version” command again.

Note that it’s possible to add an export line like the one above to your ~/.bash_profile file so you don’t have to run it yourself when you open a new terminal.






Configure AWS CLI

Next you need to configure AWS CLI.

Create a .aws directory in your home directory (which is called ~) like this:

mkdir ~/.aws

We will be creating two plain text files in the .aws directory and it is important that these files do not end in “.txt” or any other extension. After creating the files, you can verify their names with the following command:

ls ~/.aws

Create a plain text file at ~/.aws/config with the following content:

[default]
region = us-east-1





Please note that at this time the region must be set to “us-east-1” but in the future we could improve our scripts to support other regions.

Create a plain text file at ~/.aws/credentials with the following content:

[default]
aws_access_key_id = XXXXXXXXXXXXXXXXXXXX
aws_secret_access_key = XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX





Then update the file and replace the values for “aws_access_key_id” and “aws_secret_access_key” with your actual credentials by following the instructions at https://aws.amazon.com/blogs/security/wheres-my-secret-access-key/

If you are having trouble configuring the files manually as described above, see https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-getting-started.html which documents the aws configure command.




Configure ~/.dataverse/ec2.env

In order to publish datasets you must configure a file at ~/.dataverse/ec2.env and contact DataCite at support@datacite.org to ask for a test username and password.

Create a .dataverse directory in your home directory like this:

mkdir ~/.dataverse

Download ec2.env and put it in the directory at ~/.dataverse that you just created. From the command line, you can try the command below to move the file into place:

mv ~/Downloads/ec2.env ~/.dataverse

Edit the file at ~/.dataverse/ec2.env and fill in username and password from DataCite into the following fields:


	dataverse_doi_username


	dataverse_doi_password







Download and Run the “Create Instance” Script

Once you have done the configuration above, you are ready to try running the “create instance” script to spin up Dataverse in AWS.

Download ec2-create-instance.sh and put it somewhere reasonable. For the purpose of these instructions we’ll assume it’s in the “Downloads” directory in your home directory.

You need to decide which branch you’d like to deploy to AWS. Select a branch from https://github.com/IQSS/dataverse/branches/all such as “develop” and pass it to the script with -b as in the following example. (Branches such as “master” and “develop” are described in the Version Control section.)

bash ~/Downloads/ec2-create-instance.sh -b develop

You must specify the branch with -b but you can also specify a non-IQSS git repo URL with -r as in the following example.

bash ~/Downloads/ec2-create-instance.sh -b develop -r https://github.com/scholarsportal/dataverse.git

Now you will need to wait around 15 minutes until the deployment is finished. Eventually, the output should tell you how to access the installation of Dataverse in a web browser or via ssh. It will also provide instructions on how to delete the instance when you are finished with it. Please be aware that AWS charges per minute for a running instance. You can also delete your instance from https://console.aws.amazon.com/console/home?region=us-east-1 .




Caveats

Please note that while the script should work fine on newish branches, older branches that have different dependencies such as an older version of Solr are now expected to yield a working Dataverse installation. Your mileage may vary.



Previous: Coding Style | Next: Docker, Kubernetes, and OpenShift









          

      

      

    





  

    
      
          
            
  
Docker, Kubernetes, and OpenShift

Dataverse is exploring the use of Docker, Kubernetes, OpenShift and other container-related technologies.


Contents:


	OpenShift


	Install Minishift


	Start Minishift


	Make the OpenShift Client Binary (oc) Executable


	Log in to Minishift from the Command Line


	Create a Minishift Project


	Create a Dataverse App within the Minishift Project


	Log into Minishift and Visit Dataverse in your Browser


	Troubleshooting


	Check Status of Dataverse Deployment to Minishift


	Review Logs of Dataverse Deployment to Minishift


	Get a Shell (ssh/rsh) on Containers Deployed to Minishift






	Cleaning up


	Making Changes


	Making Changes to Docker Images


	Making Changes to the OpenShift Config


	Making Changes to the PostgreSQL Database from the Glassfish Pod






	Scaling Dataverse by Increasing Replicas in a StatefulSet


	Configuring Persistent Volumes and Solr master node recovery


	Running Containers to Run as Root in Minishift


	Minishift Resources






	Docker


	Installing Docker


	All In One Docker Images for Testing


	Future production use on Minishift/OpenShift/Kubernetes


	Known Issues with Dataverse Images on Docker Hub















OpenShift

From the Dataverse perspective, we are in the business of providing a “template” for OpenShift that describes how the various components we build our application on (Glassfish, PostgreSQL, Solr, the Dataverse war file itself, etc.) work together. We publish Docker images to DockerHub at https://hub.docker.com/u/iqss/ that are used in this OpenShift template.

Dataverse’s (light) use of Docker is documented below in a separate section. We actually started with Docker in the context of OpenShift, which is why OpenShift is listed first but we can imagine rearranging this in the future.

The OpenShift template for Dataverse can be found at conf/openshift/openshift.json and if you need to hack on the template or related files under conf/docker it is recommended that you iterate on them using Minishift.

The instructions below will walk you through spinning up Dataverse within Minishift. It is recommended that you do this on the “develop” branch to make sure everything is working before changing anything.


Install Minishift

Minishift requires a hypervisor and since we already use VirtualBox for Vagrant, you should install VirtualBox from http://virtualbox.org .

Download the Minishift tarball from https://docs.openshift.org/latest/minishift/getting-started/installing.html and put the minishift binary in /usr/local/bin or somewhere in your $PATH. This assumes Mac or Linux. These instructions were last tested on version v1.14.0+1ec5877 of Minishift.

At this point, you might want to consider going through the Minishift quickstart to get oriented: https://docs.openshift.org/latest/minishift/getting-started/quickstart.html




Start Minishift

minishift start --vm-driver=virtualbox --memory=8GB




Make the OpenShift Client Binary (oc) Executable

eval $(minishift oc-env)




Log in to Minishift from the Command Line

Note that if you just installed and started Minishift, you are probably logged in already. This oc login step is included in case you aren’t logged in anymore.

oc login --username developer --password=whatever

Use “developer” as the username and a couple characters as the password.




Create a Minishift Project

Calling the project “project1” is fairly arbitrary. We’ll probably want to revisit this name in the future. A project is necessary in order to create an OpenShift app.

oc new-project project1

Note that oc projects will return a list of projects.




Create a Dataverse App within the Minishift Project

The following command operates on the conf/openshift/openshift.json file that resides in the main Dataverse git repo. It will download images from Docker Hub and use them to spin up Dataverse within Minishift/OpenShift. Later we will cover how to make changes to the images on Docker Hub.

oc new-app conf/openshift/openshift.json




Log into Minishift and Visit Dataverse in your Browser

After running the oc new-app command above, deployment of Dataverse within Minishift/OpenShift will begin. You should log into the OpenShift web interface to check on the status of the deployment. If you just created the Minishift VM with the minishift start command above, the oc new-app step is expected to take a while because the images need to be downloaded from Docker Hub. Also, the installation of Dataverse takes a while.

Typing minishift console should open the OpenShift web interface in your browser. The IP address might not be “192.168.99.100” but it’s used below as an example.


	https://192.168.99.100:8443 (or URL from minishift console)


	username: developer


	password: <any password>




In the OpenShift web interface you should see a link that looks something like http://dataverse-project1.192.168.99.100.nip.io but the IP address will vary and will match the output of minishift ip. Eventually, after deployment is complete, the Dataverse web interface will appear at this URL and you will be able to log in with the username “dataverseAdmin” and the password “admin”.

Another way to verify that Dataverse has been succesfully deployed is to make sure that the Dataverse “info” API endpoint returns a version (note that minishift ip is used because the IP address will vary):

curl http://dataverse-project1.`minishift ip`.nip.io/api/info/version

From the perspective of OpenShift and the openshift.json config file, the HTTP link to Dataverse in called a route. See also documentation for oc expose.




Troubleshooting

Here are some tips on troubleshooting your deployment of Dataverse to Minishift.


Check Status of Dataverse Deployment to Minishift

oc status

Once images have been downloaded from Docker Hub, the output below will change from Pulling to Pulled.

oc get events | grep Pull

This is a deep dive:

oc get all




Review Logs of Dataverse Deployment to Minishift

Logs are provided in the web interface to each of the deployment configurations. The URLs should be something like this (but the IP address) will vary and you should click “View Log”. The installation of Dataverse is done within the one Glassfish deployment configuration:


	https://192.168.99.100:8443/console/project/project1/browse/dc/dataverse-glassfish


	https://192.168.99.100:8443/console/project/project1/browse/dc/dataverse-postgresql


	https://192.168.99.100:8443/console/project/project1/browse/dc/dataverse-solr




You can also see logs from each of the components (Glassfish, PostgreSQL, and Solr) from the command line with oc logs like this (just change the grep at the end):

oc logs $(oc get po -o json | jq '.items[] | select(.kind=="Pod").metadata.name' -r | grep glassfish)




Get a Shell (ssh/rsh) on Containers Deployed to Minishift

You can get a shell on any of the containers for each of the components (Glassfish, PostgreSQL, and Solr) with oc rc (just change the grep at the end):

oc rsh $(oc get po -o json | jq '.items[] | select(.kind=="Pod").metadata.name' -r | grep glassfish)

From the rsh prompt of the Glassfish container you could run something like the following to make sure that Dataverse is running on port 8080:

curl http://localhost:8080/api/info/version






Cleaning up

If you simply wanted to try out Dataverse on Minishift and want to clean up, you can run oc delete project project1 to delete the project or minishift stop and minishift delete to delete the entire Minishift VM and all the Docker containers inside it.




Making Changes


Making Changes to Docker Images

If you’re interested in using Minishift for development and want to change the Dataverse code, you will need to get set up to create Docker images based on your changes and make them available within Minishift.

It is recommended to add experimental images to Minishift’s internal registry. Note that despite what https://docs.openshift.org/latest/minishift/openshift/openshift-docker-registry.html says you will not use docker push because we have seen “unauthorized: authentication required” when trying to push to it as reported at https://github.com/minishift/minishift/issues/817 . Rather you will run docker build and run docker images to see that your newly build images are listed in Minishift’s internal registry.

First, set the Docker environment variables so that docker build and docker images refer to the internal Minishift registry rather than your normal Docker setup:

eval $(minishift docker-env)

When you’re ready to build, change to the right directory:

cd conf/docker

And then run the build script in “internal” mode:

./build.sh internal

Note that conf/openshift/openshift.json must not have imagePullPolicy set to Always or it will pull from “iqss” on Docker Hub. Changing it to IfNotPresent allow Minishift to use the images shown from docker images rather than the ones on Docker Hub.

Using Minishift for day to day Dataverse development might be something we want to investigate in the future. These blog posts talk about developing Java applications using Minishift/OpenShift:


	https://blog.openshift.com/fast-iterative-java-development-on-openshift-kubernetes-using-rsync/


	https://blog.openshift.com/debugging-java-applications-on-openshift-kubernetes/







Making Changes to the OpenShift Config

If you are interested in changing the OpenShift config file for Dataverse at conf/openshift/openshift.json note that in many cases once you have Dataverse running in Minishift you can use oc process and oc apply like this (but please note that some errors and warnings are expected):

oc process -f conf/openshift/openshift.json | oc apply -f -

The slower way to iterate on the openshift.json file is to delete the project and re-create it.




Making Changes to the PostgreSQL Database from the Glassfish Pod

You can access and modify the PostgreSQL database via an interactive terminal called psql.

To log in to psql from the command line of the Glassfish pod, type the following command:

PGPASSWORD=$POSTGRES_PASSWORD; export PGPASSWORD; /usr/bin/psql -h $POSTGRES_SERVER.$POSTGRES_SERVICE_HOST -U $POSTGRES_USER -d $POSTGRES_DATABASE

To log in as an admin, type this command instead:

PGPASSWORD=$POSTGRESQL_ADMIN_PASSWORD; export PGPASSWORD; /usr/bin/psql -h $POSTGRES_SERVER.$POSTGRES_SERVICE_HOST -U postgres -d $POSTGRES_DATABASE






Scaling Dataverse by Increasing Replicas in a StatefulSet

Glassfish, Solr and PostgreSQL Pods are in a “StatefulSet” which is a concept from OpenShift and Kubernetes that you can read about at https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/

As of this writing, the openshift.json file has a single “replica” for each of these two stateful sets. It’s possible to increase the number of replicas from 1 to 3, for example, with this command:

oc scale statefulset/dataverse-glassfish --replicas=3

The command above should result in two additional Glassfish pods being spun up. The name of the pods is significant and there is special logic in the “zeroth” pod (“dataverse-glassfish-0” and “dataverse-postgresql-0”). For example, only “dataverse-glassfish-0” makes itself the dedicated timer server as explained in Dataverse Application Timers section of the Admin Guide. “dataverse-glassfish-1” and other higher number pods will not be configured as a timer server.

Once you have multiple Glassfish servers you may notice bugs that will require additional configuration to fix. One such bug has to do with Dataverse logos which are stored at /usr/local/glassfish4/glassfish/domains/domain1/docroot/logos on each of the Glassfish servers. This means that the logo will look fine when you just uploaded it because you’re on the server with the logo on the local file system but when you visit that dataverse in the future and you’re on a differernt Glassfish server, you will see a broken image. (You can find some discussion of this logo bug at https://github.com/IQSS/dataverse-aws/issues/10 and http://irclog.iq.harvard.edu/dataverse/2016-10-21 .) This is all “advanced” installation territory (see the Advanced Installation section of the Installation Guide) and OpenShift might be a good environment in which to work on some of these bugs.

Multiple PostgreSQL servers are possible within the OpenShift environment as well and have been set up with some amount of replication. “dataverse-postgresql-0” is the master and non-zero pods are the slaves. We have just scratched the surface of this configuration but replication from master to slave seems to we working. Future work could include failover and making Dataverse smarter about utilizing multiple PostgreSQL servers for reads. Right now we assume Dataverse is only being used with a single PostgreSQL server and that it’s the master.

Solr supports index distribution and replication for scaling. For OpenShift use, we choose replication. It’s possible to scale up Solr using the method method similar to Glassfish, as mentioned aboved
In OpenShift, the first Solr pod, dataverse-solr-0, will be the master node, and the rest will be slave nodes




Configuring Persistent Volumes and Solr master node recovery

Solr requires backing up the search index to persistent storage. For our proof of concept, we configure a hostPath, which allows Solr containers to access the hosts’ file system, for our Solr containers backups. To read more about OpenShift/Kubernetes’ persistent volumes, please visit: https://kubernetes.io/docs/concepts/storage/persistent-volumes

To allow containers to use a host’s storage, we need to allow access to that directory first. In this example, we expose /tmp/share to the containers:

# mkdir /tmp/share
# chcon -R -t svirt_sandbox_file_t
# chgrp root -R /tmp/share
# oc login -u system:admin
# oc edit scc restricted     # Update allowHostDirVolumePlugin to true and runAsUser type to RunAsAny





To add a persistent volume and persistent volume claim, in conf/docker/openshift/openshift.json, add the following to objects in openshift.json.
Here, we are using hostPath for development purposes. Since OpenShift supports many types of cluster storages,
if the administrator wishes to use any cluster storage like EBS, Google Cloud Storage, etc, they would have to use a different type of Persistent Storage:

{
  "kind" : "PersistentVolume",
  "apiVersion" : "v1",
  "metadata":{
    "name" : "solr-index-backup",
    "labels":{
      "name" : "solr-index-backup",
      "type" : "local"
    }
  },
  "spec":{
    "capacity":{
      "storage" : "8Gi"
    },
    "accessModes":[
      "ReadWriteMany", "ReadWriteOnce",  "ReadOnlyMany"
    ],
    "hostPath": {
      "path" : "/tmp/share"
    }
  }
},
{
  "kind" : "PersistentVolumeClaim",
  "apiVersion": "v1",
  "metadata": {
    "name": "solr-claim"
  },
  "spec": {
    "accessModes": [
      "ReadWriteMany", "ReadWriteOnce",  "ReadOnlyMany"
    ],
    "resources": {
      "requests": {
        "storage": "3Gi"
      }
    },
    "selector":{
      "matchLabels":{
        "name" : "solr-index-backup",
        "type" : "local"
        }
      }
    }
  }





To make solr container mount the hostPath, add the following part under .spec.spec (for Solr StatefulSet):

{
  "kind": "StatefulSet",
  "apiVersion": "apps/v1beta1",
      "metadata": {
    "name": "dataverse-solr",
      ....

  "spec": {
    "serviceName" : "dataverse-solr-service",
            .....

      "spec": {
        "volumes": [
          {
            "name": "solr-index-backup",
            "persistentVolumeClaim": {
              "claimName": "solr-claim"
            }
          }
        ],

                    "containers": [
          ....

            "volumeMounts":[
              {
                "mountPath" : "/var/share",
                "name" : "solr-index-backup"
              }





Solr is now ready for backup and recovery. In order to backup:

oc rsh dataverse-solr-0
curl 'http://localhost:8983/solr/collection1/replication?command=backup&location=/var/share'





In solr entrypoint.sh, it’s configured so that if dataverse-solr-0 failed, it will get the latest version of the index in the backup and restore. All backups are stored in /tmp/share in the host, or /home/share in solr containers.




Running Containers to Run as Root in Minishift

It is not recommended to run containers as root in Minishift because for security reasons OpenShift doesn’t support running containers as root. However, it’s good to know how to allow containers to run as root in case you need to work on a Docker image to make it run as non-root.

For more information on improving Docker images to run as non-root, see “Support Arbitrary User IDs” at https://docs.openshift.org/latest/creating_images/guidelines.html#openshift-origin-specific-guidelines

Let’s say you have a container that you suspect works fine when it runs as root. You want to see it working as-is before you start hacking on the Dockerfile and entrypoint file. You can configure Minishift to allow containers to run as root with this command:

oc adm policy add-scc-to-user anyuid -z default --as system:admin

Once you are done testing you can revert Minishift back to not allowing containers to run as root with this command:

oc adm policy remove-scc-from-user anyuid -z default --as system:admin




Minishift Resources

The following resources might be helpful.


	https://blog.openshift.com/part-1-from-app-to-openshift-runtimes-and-templates/


	https://blog.openshift.com/part-2-creating-a-template-a-technical-walkthrough/


	https://docs.openshift.com/enterprise/3.0/architecture/core_concepts/templates.html









Docker

From the Dataverse perspective, Docker is important for a few reasons:


	We are thankful that NDS Labs did the initial work to containerize Dataverse and include it in the “workbench” we mention in the Preparation section of the Installation Guide. The workbench allows people to kick the tires on Dataverse.


	There is interest from the community in running Dataverse on OpenShift and some initial work has been done to get Dataverse running on Minishift in Docker containers. Minishift makes use of Docker images on Docker Hub. To build new Docker images and push them to Docker Hub, you’ll need to install Docker. The main issue to follow is https://github.com/IQSS/dataverse/issues/4040 .


	Docker may aid in testing efforts if we can easily spin up Docker images based on code in pull requests and run the full integration suite against those images. See the Testing section for more information on integration tests.





Installing Docker

On Linux, you can probably get Docker from your package manager.

On Mac, download the .dmg from https://www.docker.com and install it. As of this writing is it known as Docker Community Edition for Mac.

On Windows, we have heard reports of success using Docker on a Linux VM running in VirtualBox or similar. There’s something called “Docker Community Edition for Windows” but we haven’t tried it. See also the Windows Development section.

As explained above, we use Docker images in two different contexts:


	Testing using an “all in one” Docker image (ephemeral, unpublished)


	Future production use on Minishift/OpenShift/Kubernetes (published to Docker Hub)







All In One Docker Images for Testing

The “all in one” Docker files are in conf/docker-aio and you should follow the readme in that directory for more information on how to use them.




Future production use on Minishift/OpenShift/Kubernetes

FIXME: rewrite this section to talk about only pushing stable images to Docker Hub.

When working with Docker in the context of Minishift, follow the instructions above and make sure you get the Dataverse Docker images running in Minishift before you start messing with them.

As of this writing, the Dataverse Docker images we publish under https://hub.docker.com/u/iqss/ are highly experimental. They were originally tagged with branch names like kick-the-tires and as of this writing the latest tag should be considered highly experimental and not for production use. See https://github.com/IQSS/dataverse/issues/4040 for the latest status and please reach out if you’d like to help!

Change to the docker directory:

cd conf/docker

Edit one of the files:

vim dataverse-glassfish/Dockerfile

At this point you want to build the image and run it. We are assuming you want to run it in your Minishift environment. We will be building your image and pushing it to Docker Hub.

Log in to Docker Hub with an account that has access to push to the iqss organization:

docker login

(If you don’t have access to push to the iqss organization, you can push elsewhere and adjust your openshift.json file accordingly.)

Build and push the images to Docker Hub:

./build.sh

Note that you will see output such as digest: sha256:213b6380e6ee92607db5d02c9e88d7591d81f4b6d713224d47003d5807b93d4b that should later be reflected in Minishift to indicate that you are using the latest image you just pushed to Docker Hub.

You can get a list of all repos under the iqss organization with this:

curl https://hub.docker.com/v2/repositories/iqss/

To see a specific repo:

curl https://hub.docker.com/v2/repositories/iqss/dataverse-glassfish/


Known Issues with Dataverse Images on Docker Hub

Again, Dataverse Docker images on Docker Hub are highly experimental at this point. As of this writing, their purpose is primarily for kicking the tires on Dataverse. Here are some known issues:


	The Dataverse installer is run in the entrypoint script every time you run the image. Ideally, Dataverse would be installed in the Dockerfile instead. Dataverse is being installed in the entrypoint script because it needs PosgreSQL to be up already so that database tables can be created when the war file is deployed.


	The storage should be abstracted. Storage of data files and PostgreSQL data. Probably Solr data.


	Better tuning of memory by examining /sys/fs/cgroup/memory/memory.limit_in_bytes and incorporating this into the Dataverse installation script.


	Only a single Glassfish server can be used. See “Dedicated timer server in a Dataverse server cluster” in the Dataverse Application Timers section of the Installation Guide.


	Only a single PostgreSQL server can be used.


	Only a single Solr server can be used.






Previous: Deployment | Next: Making Releases











          

      

      

    





  

    
      
          
            
  
Making Releases


Contents:


	Create the release GitHub issue and branch


	1. Bump Version Numbers


	2. Save the EJB Database Create Script


	3. Check in the Changes Above…






	Merge “develop” into “master”


	Write Release Notes


	Make Artifacts Available for Download


	Publish Release






Use the number of the milestone with a “v” in front for the relase tag. For example: v4.6.2.


Create the release GitHub issue and branch

Use the GitHub issue number and the release tag for the name of the branch.
For example: 4734-update-v-4.8.6-to-4.9

Note: the changes below must be the very last commits merged into the develop branch before it is merged into master and tagged for the release!

Make the following changes in the release branch:


1. Bump Version Numbers

Increment the version number to the milestone (e.g. 4.6.2) in the following two files:


	pom.xml


	doc/sphinx-guides/source/conf.py (two places)




Add the version being released to the lists in the following two files:


	doc/sphinx-guides/source/versions.rst


	scripts/database/releases.txt




Here’s an example commit where three of the four files above were updated at once: https://github.com/IQSS/dataverse/commit/99e23f96ec362ac2f524cb5cd80ca375fa13f196




2. Save the EJB Database Create Script

Save the script domains/domain1/generated/ejb/dataverse/dataverse_VDCNet-ejbPU_createDDL.jdbc created by EJB during the deployment of the release candidate. Important: add semicolons to the ends of the SQL commands in the EJB-generated file (see below)! Save the resulting file as scripts/database/create/create_v{VERSION_TAG}.sql using the version number tag for the release. For example:

sed 's/$/;/' dataverse_VDCNet-ejbPU_createDDL.jdbc > scripts/database/create/create_v4.10.sql





(We are saving the script above to support the new experimental process for updating the database across multiple versions; see scripts/database/README_upgrade_across_versions.txt for more information.)




3. Check in the Changes Above…

… into the release branch, make a pull request and merge the release branch into develop.






Merge “develop” into “master”

The “develop” branch should be merged into “master” before tagging. See also the branching strategy described in the Version Control section.




Write Release Notes

Create a draft release at https://github.com/IQSS/dataverse/releases/new


	The “tag version” and “title” should be the number of the milestone with a “v” in front (i.e. v4.6.2).


	For the description, follow previous examples at https://github.com/IQSS/dataverse/releases




Please note that the current process involves copying and pasting a running Google doc into release notes but we are conducting an experiment whereby developers can express the need for an addition to release notes by creating a file in /doc/release-notes containing the name of the issue they’re working on. Perhaps the name of the branch could be used for the filename with “.md” appended (release notes are written in Markdown) such as 5053-apis-custom-homepage.md. To avoid accumulating many stale files over time, when a release is cut these files should probably be removed with git rm. This experiment may help inform a future experiment having to do with improvements to our process for writing SQL upgrade scripts. See the SQL Upgrade Scripts section for more on this topic.




Make Artifacts Available for Download

Upload the following artifacts to the draft release you created:


	war file (mvn package from Jenkins)


	installer (cd scripts/installer && make)


	database migration script (see also the SQL Upgrade Scripts section)


	other files as needed, such as an updated Solr schema







Publish Release

Click the “Publish release” button.



Previous: Docker, Kubernetes, and OpenShift | Next: Tools







          

      

      

    





  

    
      
          
            
  
Tools

These are handy tools for your Development Environment.


Contents:


	Netbeans Connector Chrome Extension


	pgAdmin


	Maven


	Vagrant


	PlantUML


	Eclipse Memory Analyzer Tool (MAT)


	PageKite


	MSV


	FontCustom


	SonarQube


	Infer


	lsof







Netbeans Connector Chrome Extension

The Netbeans Connector [https://chrome.google.com/webstore/detail/netbeans-connector/hafdlehgocfcodbgjnpecfajgkeejnaa?hl=en] extension for Chrome allows you to see changes you’ve made to HTML pages the moment you save the file without having to refresh your browser. See also
http://wiki.netbeans.org/ChromeExtensionInstallation




pgAdmin

You probably installed pgAdmin when following the steps in the Development Environment section but if not, you can download it from https://www.pgadmin.org




Maven

With Maven installed you can run mvn package and mvn test from the command line. It can be downloaded from https://maven.apache.org




Vagrant

Vagrant allows you to spin up a virtual machine running Dataverse on your development workstation. You’ll need to install Vagrant from https://www.vagrantup.com and VirtualBox from https://www.virtualbox.org.

We assume you have already cloned the repo from https://github.com/IQSS/dataverse as explained in the Development Environment section.

From the root of the git repo (where the Vagrantfile is), run vagrant up and eventually you should be able to reach an installation of Dataverse at http://localhost:8888 (the forwarded_port indicated in the Vagrantfile).

Please note that running vagrant up for the first time should run the downloads/download.sh script for you to download required software such as Glassfish and Solr and any patches. However, these dependencies change over time so it’s a place to look if vagrant up was working but later fails.

On Windows if you see an error like /usr/bin/perl^M: bad interpreter you might need to run dos2unix on the installation scripts.




PlantUML

PlantUML is used to create diagrams in the guides and other places. Download it from http://plantuml.com and check out an example script at https://github.com/IQSS/dataverse/blob/v4.6.1/doc/Architecture/components.sh . Note that for this script to work, you’ll need the dot program, which can be installed on Mac with brew install graphviz.




Eclipse Memory Analyzer Tool (MAT)

The Memory Analyzer Tool (MAT) from Eclipse can help you analyze heap dumps, showing you “leak suspects” such as seen at https://github.com/payara/Payara/issues/350#issuecomment-115262625

It can be downloaded from http://www.eclipse.org/mat

If the heap dump provided to you was created with gcore (such as with gcore -o /tmp/gf.core $glassfish_pid) rather than jmap, you will need to convert the file before you can open it in MAT. Using gf.core.13849 as example of the original 33 GB file, here is how you could convert it into a 26 GB gf.core.13849.hprof file. Please note that this operation took almost 90 minutes:

/usr/java7/bin/jmap -dump:format=b,file=gf.core.13849.hprof /usr/java7/bin/java gf.core.13849

A file of this size may not “just work” in MAT. When you attempt to open it you may see something like “An internal error occurred during: “Parsing heap dump from ‘/tmp/heapdumps/gf.core.13849.hprof’”. Java heap space”. If so, you will need to increase the memory allocated to MAT. On Mac OS X, this can be done by editing MemoryAnalyzer.app/Contents/MacOS/MemoryAnalyzer.ini and increasing the value “-Xmx1024m” until it’s high enough to open the file. See also http://wiki.eclipse.org/index.php/MemoryAnalyzer/FAQ#Out_of_Memory_Error_while_Running_the_Memory_Analyzer




PageKite

PageKite is a fantastic service that can be used to share your
local development environment over the Internet on a public IP address.

With PageKite running on your laptop, the world can access a URL such as
http://pdurbin.pagekite.me to see what you see at http://localhost:8080

Sign up at https://pagekite.net and follow the installation instructions or simply download https://pagekite.net/pk/pagekite.py

The first time you run ./pagekite.py a file at ~/.pagekite.rc will be
created. You can edit this file to configure PageKite to serve up port 8080
(the default GlassFish HTTP port) or the port of your choosing.

According to https://pagekite.net/support/free-for-foss/ PageKite (very generously!) offers free accounts to developers writing software the meets http://opensource.org/docs/definition.php such as Dataverse.




MSV

MSV (Multi Schema Validator) [http://msv.java.net] can be used from the command line to validate an XML document against a schema. Download the latest version from https://java.net/downloads/msv/releases/ (msv.20090415.zip as of this writing), extract it, and run it like this:

$ java -jar /tmp/msv-20090415/msv.jar Version2-0.xsd ddi.xml
start parsing a grammar.
validating ddi.xml
the document is valid.








FontCustom

The custom file type icons were created with the help of FontCustom <https://github.com/FontCustom/fontcustom>. Their README provides installation instructions as well as directions for producing your own vector-based icon font.

Here is a vector-based SVG file to start with as a template: icon-template.svg




SonarQube

SonarQube is a static analysis tool that can be used to identify possible problems in the codebase, or with new code. It may report false positives or false negatives, but can help identify potential problems before they are reported in prodution or to identify potential causes of problems reported in production.

Download SonarQube from https://www.sonarqube.org and start look in the bin directory for a sonar.sh script for your architecture. Once the tool is running on http://localhost:9000 you can use it as the URL in this example script to run sonar:

#!/bin/sh

mvn sonar:sonar \
-Dsonar.host.url=${your_sonar_url} \
-Dsonar.login=${your_sonar_token_for_project} \
-Dsonar.test.exclusions='src/test/**,src/main/webapp/resources/**' \
-Dsonar.issuesReport.html.enable=true \
-Dsonar.issuesReport.html.location='sonar-issues-report.html' \
-Dsonar.jacoco.reportPath=target/jacoco.exec





Once the analysis is complete, you should be able to access http://localhost:9000/dashboard?id=edu.harvard.iq%3Adataverse to see the report. To learn about resource leaks, for example, click on “Bugs”, the “Tag”, then “leak” or “Rule”, then “Resources should be closed”.




Infer

Infer is another static analysis tool that can be downloaded from https://github.com/facebook/infer

Example command to run infer:

$  infer -- mvn package





Look for “RESOURCE_LEAK”, for example.




lsof

If file descriptors are not closed, eventually the open but unused resources can cause problems with system (glassfish in particular) stability.
Static analysis and heap dumps are not always sufficient to identify the sources of these problems.
For a quick sanity check, it can be helpful to check that the number of file descriptors does not increase after a request has finished processing.

For example…

$  lsof | grep M6EI0N | wc -l
0
$  curl -X GET "http://localhost:8083/dataset.xhtml?persistentId=doi:10.5072/FK2/M6EI0N" > /dev/null
$  lsof | grep M6EI0N | wc -l
500





would be consistent with a file descriptor leak on the dataset page.



Previous: Making Releases | Next: Universal Numerical Fingerprint (UNF)







          

      

      

    





  

    
      
          
            
  
Universal Numerical Fingerprint (UNF)


[image: alternate text]
Fig.1 UNF: used to uniquely identify and verify data.



Universal Numerical Fingerprint (UNF) is a unique signature of the
semantic content of a digital object. It is not simply a
checksum of a binary data file. Instead, the UNF algorithm
approximates and normalizes the data stored within. A cryptographic
hash of that normalized (or canonicalized) representation is then
computed. The signature is thus independent of the storage
format. E.g., the same data object stored in, say, SPSS and Stata,
will have the same UNF.

Early versions of Dataverse were using the first released
implementation of the UNF algorithm (v.3, implemented in R).  Starting
with Dataverse 2.0 and throughout the 3.* lifecycle, UNF v.5
(implemented in Java) was used. Dataverse 4.0 uses the latest release,
UNF v.6. Two parallel implementation, in R and Java, will be
available, for cross-validation.

Learn more: Micah Altman and Gary King. 2007. “A Proposed Standard for the Scholarly Citation of Quantitative Data.” D-Lib Magazine, 13. Publisher’s Version Copy at http://j.mp/2ovSzoT

Contents:



	UNF Version 3

	UNF Version 5

	UNF Version 6
	I. UNF of a Data Vector

	II. Combining multiple UNFs to create UNFs of higher-level objects.

	Footnotes:











Previous: Tools | Next: Shibboleth and OAuth





          

      

      

    





  

    
      
          
            
  
UNF Version 3

Version 3 of the UNF algorithm was used by the Dataverse Network software prior to version 2.0, and was implemented in R code. This algorithm was used on digital objects containing vectors of numbers, vectors of character strings, data sets comprising such vectors, and studies comprising one or more such data sets.

The UNF V3 algorithm applied to the content of a data set or study is as follows:


	Round each element in a numeric vector to k significant digits using the IEEE 754 round towards zero rounding mode. The default value of k is seven, the maximum expressible in single-precision floating point calculations. UNF calculation for vectors of character strings is identical, except that you truncate to k characters and the default value of k is 128.


	Convert each vector element to a character string in exponential notation, omitting noninformational zeros. If an element is missing, represent it as a string of three null characters. If an element is an IEEE 754, nonfinite, floating-point special value, represent it as the signed, lowercase, IEEE minimal printable equivalent (that is, +inf, -inf, or +nan).




Each character string comprises the following:


	A sign character.


	A single leading digit.


	A decimal point.


	Up to k-1 digits following the decimal, consisting of the remaining k-1 digits of the number, omitting trailing zeros.


	A lowercase letter “e.”


	A sign character.


	The digits of the exponent, omitting trailing zeros.




For example, the number pi at five digits is represented as -3.1415e+, and the number 300 is represented as the string +3.e+2.


	Terminate character strings representing nonmissing values with a POSIX end-of-line character.


	Encode each character string with Unicode bit encoding [http://www.unicode.org/versions/Unicode4.0.0/]. Versions 3 through 4 use UTF-32BE; Version 4.1 uses UTF-8.


	Combine the vector of character strings into a single sequence, with each character string separated by a POSIX end-of-line character and a null byte.


	Compute a hash on the resulting sequence using the standard MD5 hashing algorithm for Version 3 and using SHA256 [http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf] for Version 4. The resulting hash is base64 [http://www.ietf.org/rfc/rfc3548.txt] encoded to support readability.


	Calculate the UNF for each lower-level data object, using a consistent UNF version and level of precision across the individual UNFs being combined.


	Sort the base64 representation of UNFs in POSIX locale sort order.


	Apply the UNF algorithm to the resulting vector of character strings using k at least as large as the length of the underlying character string.


	Combine UNFs from multiple variables to form a single UNF for an entire data frame, and then combine UNFs for a set of data frames to form a single UNF that represents an entire research study.




Learn more:
Software for computing UNFs is available in an R Module, which includes a Windows standalone tool and code for Stata and SAS languages. Also see the following for more details: Micah Altman and Gary King. 2007. “A Proposed Standard for the Scholarly Citation of Quantitative Data,” D-Lib Magazine, Vol. 13, No. 3/4 (March). (Abstract: HTML [http://gking.harvard.edu/files/abs/cite-abs.shtml] | Article: PDF [http://gking.harvard.edu/files/cite.pdf])





          

      

      

    





  

    
      
          
            
  
UNF Version 5

Important Update:

UNF Version 5 has been in use by the Dataverse project since 2009. It was built into every version of the DVN, starting with 2.0 and up to 3.6.2. However, some problems were recently found in that implementation. Namely, in certain cases data normalization is not implemented fully to the spec. UNF signatures it generates are still reasonably strong statistically; however, this means that at least some of our signatures are not independently verifiable. I.e., if somebody fully implements their own version of UNF calculator, for certain datasets it would calculate signatures different from those generated by the DVN. Unless of course they implement it with the exact same bugs as ours.

To address this, the Project is about to release UNF Version 6. The release date is still being discussed. It may coincide with the release of Dataverse 4.0. Alternatively, the production version of DVN 3.6.3 may get upgraded to use UNF v6 prior to that. This will be announced shortly. In the process, we are solving another problem with UNF v5 - this time we’ve made an effort to offer very implementer-friendly documentation that describes the algorithm fully and unambiguously. So if you are interested in implementing your own version of a UNF calculator, (something we would like to encourage!) please proceed directly to the Version 6 documentation.

Going forward, we are going to offer a preserved version of the Version 5 library and, possibly, an online UNF v5 calculator, for the purposes of validating vectors and data sets for which published Version 5 UNFs exist.





          

      

      

    





  

    
      
          
            
  
UNF Version 6

(this document is a draft!)

The document is primarily intended for those who are interested in implementing their own UNF Version 6 calculator. We would like to encourage multiple parallel implementations, since that would be a great (the only, really) way to cross-validate UNF signatures calculated for specific sets of data.

Algorithm Description

UNF v5, on which v6 is based, was originally described in Dr. Micah Altman’s paper “A Fingerprint Method for Verification of Scientific Data”, Springer Verlag, 2008. The reader is encouraged to consult it for the explanation of the theory behind UNF. However, various changes and clarifications concerning the specifics of normalization have been made to the algorithm since the publication. These crucial details were only documented in the author’s unpublished edits of the article and in private correspondence. With this document, a serious effort has been made to produce a complete step-by-step description of the entire process. It should be fully sufficient for the purposes of implementing the algorithm.


Contents:


	I. UNF of a Data Vector


	II. Combining multiple UNFs to create UNFs of higher-level objects.


	Footnotes:







I. UNF of a Data Vector

For each individual vector in a data frame, calculate its UNF signature as follows:

Ia. Normalize each vector element as follows:

1. For a vector of numeric elements:
Round each vector element to N significant digits using the IEEE 754 “round towards nearest, ties to even” rounding mode. The default value of N is 7.

(See an Important Note on the use of default and optional values and methods!)

Convert each vector element into a character string in exponential notation, as follows:


A sign character.

A single leading non-zero digit.

A decimal point.

Up to N-1 remaining digits following the decimal, no trailing zeros.

A lowercase letter “e”.

A sign character.

The digits of the exponent, omitting trailing zeros.



Special cases:


Zero representation (an exception to the “leading non-zero digit” rule, above):

+0.e+ for positive zero.

-0.e+ for negative zero.

(see the Note below on negative zero)



Infinity and NaN (“Not a Number”) values:

If an element is an IEEE 754, non-finite, special floating-point value, represent it as the signed, lowercase, IEEE minimal printable equivalent, that is, +inf, -inf, or +nan. No attempt is made to differentiate between various types of NaNs allowed under IEEE 754.

Examples:


The number 1 is normalized as +1.e+

The number pi at 5 digits is normalized as +3.1415e+

The number -300 is normalized as -3.e+2

The number 0.00073 is normalized as +7.3e-4

Positive infinity is normalized as +inf

The number 1.23456789, normalized with the default rounding to 7 digits of precision, is normalized as +1.234568e+



An “official” list of pre-calculated sample UNFs is supplied with the source of the Java implementation of UNF v6; see the Note at the end of the document.

2. For a vector of character strings:

Encode each character string with Unicode bit encoding. In UNF Version 6 UTF-8 is used. Truncate each string to X characters; the default value of X is 128. No further normalization is performed.

3. Vectors of Boolean values

Should be treated as numeric vectors of 0 s and 1 s.

4. Bit fields.

Normalize bit fields by converting to big-endian form, truncating all leading empty bits, aligning to a byte boundary by padding with leading zero bits, and base64 encoding to form a character string representation.

5. Normalize dates, times and intervals as follows:


5a. Dates.

Convert calendar dates to a character string of the form YYYY-MM-DD, zero padded. Partial dates in the form YYYY or YYYY-MM are permitted




5b. Time.

Time representation is based on an ISO 8601 format hh:mm:ss.fffff. hh, mm and ss are 2 digit, zero-padded numbers. fffff represents fractions of a second, it must contain no trailing (non-significant) zeroes, and must be omitted altogether the value is zero. No other fractional representations, such as fractional minutes or hours, are permitted. If the time zone of the observation is known, convert the time value to the UTC time zone and append a ”Z” to the time representation. (In other words, no time zones other than UTC are allowed in the final normalized representation).



(see the Note at the end of this document for a discussion on potential issues when calculating UNFs of time values).


5c. Combined Date and Time values.

Format elements that comprise a combined date and time by concatenating the (full) date representation, a single letter “T”, and the time representation. Partial date representations are prohibited in combined date and time values.




5d. Intervals.

Represent intervals by using two date-time values, each formatted as defined previously, and separated by a slash (“/”).




Durations, that were mentioned in the old UNF v5 document are NOT in fact implemented and have been dropped from the spec.



Examples:

2:29 pm on Jun 10, 2012 is normalized as “2012-06-10T14:29:00”.


Fri Aug 22 12:51:05 EDT 2014 is normalized as “2014-08-22T16:51:05Z”

(The UTC offset of Eastern Daylight Time is -4:00).



6. Missing values
Missing values, of all of the above types, are encoded as 3 null bytes: \000\000\000.

Ib. Calculate the UNF of the vector as follows:

Terminate each character string representing a NON-MISSING value with a POSIX end-of-line character and a null byte (\000). Do not terminate missing value representations (3 null bytes \000\000\000). Concatenate all the individual character strings, and compute the SHA256 hash of the combined string. Truncate the resulting hash to 128 bits (128 being the default, with other values possible - see the note at the end of the document). Encode the resulting string in base64, for readability. Prepend the encoded hash string with the signature header UNF:6: (with 6 indicating the current version).

Example:


Vector (numeric): {1.23456789, <MISSING VALUE>, 0}

Normalized elements (N = 7,default): “+1.234568e+”, “\000\000\000”, “+0.e+”

Combined string: “+1.234568e+\n\000\000\000\000+0.e+\n\000”

SHA256 hash. truncated to the default 128 bits: Do5dfAoOOFt4FSj0JcByEw==

Printable UNF: UNF:6:Do5dfAoOOFt4FSj0JcByEw==






II. Combining multiple UNFs to create UNFs of higher-level objects.

IIa. Combine the UNFs of multiple variables to form the UNF for an entire data frame as follows:


UNF of a data frame (datafile) with 1 variable:

The UNF of the data frame is the same as the UNF of the variable.




UNF of a data frame with the number of variables > 1:

Sort the printable UTF8 representations of the individual UNFs in the POSIX locale sort order.

Apply the UNF algorithm to the resulting vector of character strings.



Do note the sorting part, above, it is important! In a vector of observations, the order is important; changing the order of observations changes the UNF. A data frame, however, is considered an unordered set of individual vectors. I.e., re-arranging the order in which data variable columns occur in an R or Stata file should not affect the UNF. Hence the UNFs of individual variables are sorted, before the combined UNF of the data frame is calculated.

IIb. Similarly, combine the UNFs for a set of data frames to form a single UNF that represents an entire research study (“dataset”).

Again, the UNF of a study (dataset) with a single file = the UNF of the file; for more than one file, calculate the study UNF as described above.

Using a consistent UNF version and level of precision across an entire dataset is recommended when calculating the UNFs of individual data objects.




Footnotes:

Note: On default and non-default parameter values:
Here and throughout the rest of this document, phrases like “The default value of N is 7” suggest that it is possible to use non-default values, such as a different number of digits of precision, in this case. This has been a source of some confusion in the past. UNF relies on data normalization to produce “data fingerprints” that are meaningful and descriptive. So how do you generate reproducible and verifiable signatures if any flexibility is allowed in the normalization algorithm? The answer, as specified in the original UNF paper: any non-default parameters used are embedded in the header portion of the UNF!

For example, to specify a non-default precision the parameter it is specified using the parameter N, formatted as follows:

Nnnn - where nnn is the number of precision digits, different from the default 7.


Example:

The UNF of a floating point (Double) vector with a single element of 1.23456789, calculated with the default 7 digits of precision, is UNF:6:vcKELUSS4s4k1snF4OTB9A==. If we want to calculate the signature with N = 9, the resulting printable UNF is UNF:6:N9:IKw+l4ywdwsJeDze8dplJA==. With the parameter value embedded in the signature, it can be recalculated and verified unambiguously.




Other optional parameters supported:

(multiple parameters are added comma-separated, in any order)




X### - where ### is the number of bytes for truncation of character strings;

128 is the default.

H### - where ### is the number of bits to which the SHA256 hash should be truncated.

Allowed values are {128 , 192 , 196 , 256} with 128 being the default.

R1 - truncate numeric values to N digits, instead of rounding, as previously described.



Dr. Micah Altman’s classic UNF v5 paper [http://www.researchgate.net/publication/200043172_A_Fingerprint_Method_for_Scientific_Data_Verification] mentions another optional parameter T###, for specifying rounding of date and time values (implemented as stripping the values of entire components - fractional seconds, seconds, minutes, hours… etc., progressively) - but it doesn’t specify its syntax. It is left as an exercise for a curious reader to contact the author and work out the details, if so desired. (Not implemented in UNF Version 6 by the Dataverse Project).

Note: we do not recommend truncating character strings at fewer bytes than the default 128 (the X parameter). At the very least this number must be high enough so that the printable UNFs of individual variables or files are not truncated, when calculating combined UNFs of files or datasets, respectively.

It should also be noted that the Dataverse application never calculates UNFs with any non-default parameters. And we are not aware of anyone else actually doing so. If you are considering creating your own implementation of the UNF, it may be worth trying to create a simplified, defaults-only version first. Such an implementation would be sufficient to independently verify Dataverse-produced UNFs, among other things.

Note: Negative Zero


IEEE 754 zero is signed. I.e., there are 2 zeros, positive and negative. As implemented in most programming languages, floating point types can have negative zero values. It is the responsibility of the implementer, to properly identify the sign of a floating point zero value. Which can be a bit tricky; for example, in Java programming language, when performing arithmetic comparison on values of the primitive type double, the following evaluates to TRUE:

0.0d == -0.0d

However, Java also provides a wrapper class Double, with comparison methods that recognize -0.0 and 0.0 as different values, and 0.0 to be greater than -0.0. So all of the following expressions evaluate to FALSE:

new Double(0.0d).equals(new Double(-0.0d))

Double.compare(-0.0d, 0.0d) >= 0

new Double(-0.0d).compareTo(new Double(0.0d)) >= 0



Note: UNFs of time values in real-life statistical packages

The following is not by itself an implementation concern. But it is something you may need to consider when calculating UNFs of time values from real-world data.

The fact that the same time value with and without the time zone specified produces different UNFs presents an interesting issue when converting data between different formats. For example, in STATA none of the available time types support time zones. In R, on the other hand, ALL time values are stored with a time zone. While it is possible to create an R time value from a character representation with no time zone - for example:

timevar<-as.POSIXct("03/19/2013 18:20:00", format = "%m/%d/%Y %H:%M:%OS");

it still results in R assuming the time is in the current time zone, and storing the UTC equivalent of that time. In fact R always stores its time values in UTC; specific time zones can be defined, as attributes, in which case the values will be adjusted accordingly for display. Otherwise the display representation will be readjusted each time the vector is viewed, according to the time zone current to the viewer. Meaning that the human readable representation of the same stored time value will be different when viewed on systems in different time zones. With that in mind, it appears that the only way to calculate a meaningful UNF of a time value from an R data frame is to use the stored UTC time - resulting in the “Z” in the normalized string. And that further means that it is impossible to convert a data frame with time values from STATA to R, or the other way around, and have the same UNF preserved.

We do not consider this a problem with the algorithm. These differences between the two approaches to handling time values, in R and STATA, should in fact be considered as significant. Enough so to conclude that the format conversion actually changes the data semantically. Which, in turn, justifies a new UNF.

If for whatever reason it is important to produce an R version of a STATA file while preserving the UNF, it can still be done. One way to achieve that would be to convert the original time vector to a String vector in R, in the format identical to that used in the UNF normalization algorithm, e.g., “yy-mm-ddThh:mm:ss”. One would not be able to use this resulting R vector in any time-based calculations without extra type conversion. But the data frame would produce the same UNF.

More UNF Examples:

An “official” list of sample UNFs [https://raw.githubusercontent.com/IQSS/UNF/master/doc/unf_examples.txt] of various data types is provided with the source of the UNF v6 Java implementation.







          

      

      

    





  

    
      
          
            
  
Shibboleth and OAuth


Contents:


	Shibboleth and OAuth







Shibboleth and OAuth

If you are working on anything related to users, please keep in mind that your changes will likely affect Shibboleth and OAuth users. For some background on user accounts in Dataverse, see “Auth Modes: Local vs. Remote vs. Both” in the Configuration section of the Installation Guide.

Rather than setting up Shibboleth on your laptop, developers are advised to simply add a value to their database to enable Shibboleth “dev mode” like this:

curl http://localhost:8080/api/admin/settings/:DebugShibAccountType -X PUT -d RANDOM

For a list of possible values, please “find usages” on the settings key above and look at the enum.

Now when you go to http://localhost:8080/shib.xhtml you should be prompted to create a Shibboleth account.

OAuth is much more straightforward to get working on your laptop than Shibboleth. GitHub is a good identity provider to test with because you can easily request a Client ID and Client Secret that works against localhost. Follow the instructions in the OAuth Login: ORCID, GitHub, Google section of the installation Guide and use “http://localhost:8080/oauth2/callback.xhtml” as the callback URL.

In addition to setting up OAuth on your laptop for real per above, you can also use a dev/debug mode:

curl http://localhost:8080/api/admin/settings/:DebugOAuthAccountType -X PUT -d RANDOM_EMAIL2

For a list of possible values, please “find usages” on the settings key above and look at the enum.

Now when you go to http://localhost:8080/oauth2/firstLogin.xhtml you should be prompted to create a Shibboleth account.



Previous: Universal Numerical Fingerprint (UNF) | Next: Geospatial Data







          

      

      

    





  

    
      
          
            
  
Geospatial Data


Contents:


	Geoconnect


	How Dataverse Ingests Shapefiles


	Ingest


	Example






	WorldMap JoinTargets + API Endpoint


	How Geoconnect Uses Join Target Information


	Retrieving Join Target Information from WorldMap API


	Saving Join Target Information to Geoconnect Database


	Setting Up WorldMap Test Data











Geoconnect

Geoconnect works as a middle layer, allowing geospatial data files in Dataverse to be visualized with Harvard WorldMap. To set up a Geoconnect development environment, you can follow the steps outlined in the local_setup.md [https://github.com/IQSS/geoconnect/blob/master/local_setup.md] guide. You will need Python and a few other prerequisites.

As mentioned under “Architecture and Components” in the Preparation section of the Installation Guide, Geoconnect is an optional component of Dataverse, so this section is only necessary to follow it you are working on an issue related to this feature.




How Dataverse Ingests Shapefiles

A shapefile is a set of files, often uploaded/transferred in .zip format. This set may contain up to fifteen files. A minimum of three specific files (.shp, .shx, .dbf) are needed to be a valid shapefile and a fourth file (.prj) is required for WorldMap – or any type of meaningful visualization.

For ingest and connecting to WorldMap, four files are the minimum required:


	.shp - shape format; the feature geometry itself


	.shx - shape index format; a positional index of the feature geometry to allow seeking forwards and backwards quickly


	.dbf - attribute format; columnar attributes for each shape, in dBase IV format


	.prj - projection format; the coordinate system and projection information, a plain text file describing the projection using well-known text format





Ingest

When uploaded to Dataverse, the .zip is unpacked (same as all .zip files). Shapefile sets are recognized by the same base name and specific extensions. These individual files constitute a shapefile set. The first four are the minimum required (.shp, .shx, .dbf, .prj)

For example:


	bicycles.shp    (required extension)


	bicycles.shx    (required extension)


	bicycles.prj  (required extension)


	bicycles.dbf  (required extension)


	bicycles.sbx  (NOT required extension)


	bicycles.sbn  (NOT required extension)




Upon recognition of the four required files, Dataverse will group them as well as any other relevant files into a shapefile set. Files with these extensions will be included in the shapefile set:


	Required: .shp, .shx, .dbf, .prj


	Optional: .sbn, .sbx, .fbn, .fbx, .ain, .aih, .ixs, .mxs, .atx, .cpg, shp.xml




Then Dataverse creates a new .zip with mimetype as a shapefile. The shapefile set will persist as this new .zip.




Example

1a. Original .zip contents:

A file named bikes_and_subways.zip is uploaded to the Dataverse. This .zip contains the following files.


	bicycles.shp  (shapefile set #1)


	bicycles.shx  (shapefile set #1)


	bicycles.prj  (shapefile set #1)


	bicycles.dbf  (shapefile set #1)


	bicycles.sbx  (shapefile set #1)


	bicycles.sbn  (shapefile set #1)


	bicycles.txt


	the_bikes.md


	readme.txt


	subway_line.shp  (shapefile set #2)


	subway_line.shx  (shapefile set #2)


	subway_line.prj  (shapefile set #2)


	subway_line.dbf  (shapefile set #2)




1b. Dataverse unzips and re-zips files:

Upon ingest, Dataverse unpacks the file bikes_and_subways.zip. Upon recognizing the shapefile sets, it groups those files together into new .zip files:


	files making up the “bicycles” shapefile become a new .zip


	files making up the “subway_line” shapefile become a new .zip


	remaining files will stay as they are




To ensure that a shapefile set remains intact, individual files such as bicycles.sbn are kept in the set – even though they are not used for mapping.

1c. Dataverse final file listing:


	bicycles.zip (contains shapefile set #1: bicycles.shp, bicycles.shx, bicycles.prj, bicycles.dbf, bicycles.sbx, bicycles.sbn)


	bicycles.txt  (separate, not part of a shapefile set)


	the_bikes.md  (separate, not part of a shapefile set)


	readme.txt  (separate, not part of a shapefile set)


	subway_line.zip  (contains shapefile set #2: subway_line.shp, subway_line.shx, subway_line.prj, subway_line.dbf)




For two “final” shapefile sets, bicycles.zip and subway_line.zip, a new mimetype is used:


	Mimetype: application/zipped-shapefile


	Mimetype Label: “Shapefile as ZIP Archive”









WorldMap JoinTargets + API Endpoint

WorldMap supplies target layers – or JoinTargets – that a tabular file may be mapped against. A JSON description of these CGA [http://gis.harvard.edu]-curated JoinTargets may be retrieved via API at http://worldmap.harvard.edu/datatables/api/jointargets/. Please note: login is required. You may use any WorldMap account credentials via HTTP Basic Auth.

Example of JoinTarget information returned via the API:

{
      "data":[
        {
          "layer":"geonode:census_tracts_2010_boston_6f6",
          "name":"Census Tracts, Boston (GEOID10: State+County+Tract)",
          "geocode_type_slug":"us-census-tract",
          "geocode_type":"US Census Tract",
          "attribute":{
            "attribute":"CT_ID_10",
            "type":"xsd:string"
          },
          "abstract":"As of the 2010 census, Boston, MA contains 7,288 city blocks [truncated for example]",
          "title":"Census Tracts 2010, Boston (BARI)",
          "expected_format":{
            "expected_zero_padded_length":-1,
            "is_zero_padded":false,
            "description":"Concatenation of state, county and tract for 2010 Census Tracts.  Reference: https://www.census.gov/geo/maps-data/data/tract_rel_layout.html\r\n\r\nNote:  Across the US, this can be a zero-padded \"string\" but the original Boston layer has this column as \"numeric\" ",
            "name":"2010 Census Boston GEOID10 (State+County+Tract)"
          },
          "year":2010,
          "id":28
        },
        {
          "layer":"geonode:addresses_2014_boston_1wr",
          "name":"Addresses, Boston",
          "geocode_type_slug":"boston-administrative-geography",
          "geocode_type":"Boston, Administrative Geography",
          "attribute":{
            "attribute":"LocationID",
            "type":"xsd:int"
          },
          "abstract":"Unique addresses present in the parcels data set, which itself is derived from [truncated for example]",
          "title":"Addresses 2015, Boston (BARI)",
          "expected_format":{
            "expected_zero_padded_length":-1,
            "is_zero_padded":false,
            "description":"Boston, Administrative Geography, Boston Address Location ID.  Example: 1, 2, 3...nearly 120000",
            "name":"Boston Address Location ID (integer)"
          },
          "year":2015,
          "id":18
        },
        {
          "layer":"geonode:bra_neighborhood_statistical_areas_2012__ug9",
          "name":"BRA Neighborhood Statistical Areas, Boston",
          "geocode_type_slug":"boston-administrative-geography",
          "geocode_type":"Boston, Administrative Geography",
          "attribute":{
            "attribute":"BOSNA_R_ID",
            "type":"xsd:double"
          },
          "abstract":"BRA Neighborhood Statistical Areas 2015, Boston. Provided by [truncated for example]",
          "title":"BRA Neighborhood Statistical Areas 2015, Boston (BARI)",
          "expected_format":{
            "expected_zero_padded_length":-1,
            "is_zero_padded":false,
            "description":"Boston, Administrative Geography, Boston BRA Neighborhood Statistical Area ID (integer).  Examples: 1, 2, 3, ... 68, 69",
            "name":"Boston BRA Neighborhood Statistical Area ID (integer)"
          },
          "year":2015,
          "id":17
        }
      ],
      "success":true
}






How Geoconnect Uses Join Target Information

When a user attempts to map a tabular file, the application looks in the Geoconnect database for JoinTargetInformation. If this information is more than 10 minutes* old, the application will retrieve fresh information and save it to the db.

(* Change the timing via the Django settings variable JOIN_TARGET_UPDATE_TIME.)

This JoinTarget info is used to populate HTML forms used to match a tabular file column to a JoinTarget column. Once a JoinTarget is chosen, the JoinTarget ID is an essential piece of information used to make an API call to the WorldMap and attempt to map the file.




Retrieving Join Target Information from WorldMap API

The get_join_targets() function in dataverse_layer_services.py uses the WorldMap API, retrieves a list of available tabular file JointTargets. (See the dataverse_layer_services code in GitHub [https://github.com/IQSS/geoconnect/blob/master/gc_apps/worldmap_connect/dataverse_layer_services.py#L275].)




Saving Join Target Information to Geoconnect Database

The get_latest_jointarget_information() in utils.py retrieves recent JoinTarget Information from the database. (See the utils code in GitHub [https://github.com/IQSS/geoconnect/blob/master/gc_apps/worldmap_connect/utils.py#L16].)




Setting Up WorldMap Test Data

For the dataset page, this script gives a query to add test WorldMap map data. After the query is run, the “Explore Map” button should appear for a tabular file or shapefile. In the example SQL queries below, substitute $DATASET_ID and $DATAFILE_ID with the appropriate ID’s.

To add sample map data for a tabular file:

INSERT INTO maplayermetadata (id, isjoinlayer, joindescription, embedmaplink, layerlink, layername, mapimagelink, worldmapusername, dataset_id, datafile_id)
VALUES (DEFAULT, true, 'This file was joined with WorldMap layer x, y, z',
'https://worldmap.harvard.edu/maps/embed/?layer=geonode:zip_codes_2015_zip_s9i','https://worldmap.harvard.edu/data/geonode:zip_codes_2015_zip_s9i',
'geonode:zip_codes_2015_zip_s9i',
'http://worldmap.harvard.edu/download/wms/27289/png?layers=geonode%3Azip_codes_2015_zip_s9i&#38;width=865&#38;bbox=-71.1911091251%2C42.2270382738%2C-70.9228275369%2C42.3976144794&#38;service=WMS&#38;format=image%2Fpng&#38;srs=EPSG%3A4326&#38;request=GetMap&#38;height=550',
'admin',$DATASET_ID,$DATAFILE_ID});





To add sample map data for a tabular shapefile:

INSERT INTO maplayermetadata (id, isjoinlayer, embedmaplink, layerlink, layername, mapimagelink, worldmapusername, dataset_id, datafile_id)
VALUES (DEFAULT, false,
'https://worldmap.harvard.edu/maps/embed/?layer=geonode:zip_codes_2015_zip_s9i','https://worldmap.harvard.edu/data/geonode:zip_codes_2015_zip_s9i',
'geonode:zip_codes_2015_zip_s9i',
'http://worldmap.harvard.edu/download/wms/27289/png?layers=geonode%3Azip_codes_2015_zip_s9i&#38;width=865&#38;bbox=-71.1911091251%2C42.2270382738%2C-70.9228275369%2C42.3976144794&#38;service=WMS&#38;format=image%2Fpng&#38;srs=EPSG%3A4326&#38;request=GetMap&#38;height=550',
'admin',$DATASET_ID,$DATAFILE_ID);







Previous: Universal Numerical Fingerprint (UNF) | Next: Shibboleth and OAuth









          

      

      

    





  

    
      
          
            
  
SELinux


Contents:


	Introduction


	Development Environment


	Recreating the shibboleth.te File


	Ensure that SELinux is Enforcing


	Removing the Existing shibboleth.te Rules


	Exercising SELinux denials


	Stub out the new shibboleth.te file


	Iteratively Use audit2allow to Add Rules and Test Your Change











Introduction

The shibboleth.te file below that is mentioned in the Shibboleth section of the Installation Guide was created on CentOS 6 as part of https://github.com/IQSS/dataverse/issues/3406 but may need to be revised for future versions of RHEL/CentOS (pull requests welcome!). The file is versioned with the docs and can be found in the following location:

doc/sphinx-guides/source/_static/installation/files/etc/selinux/targeted/src/policy/domains/misc/shibboleth.te

module shibboleth 1.0;

require {
    class file {open read};
    class sock_file write;
    class unix_stream_socket connectto;
    type httpd_t;
    type initrc_t;
    type var_run_t;
    type var_t;
}

allow httpd_t initrc_t:unix_stream_socket connectto;
allow httpd_t var_run_t:sock_file write;
allow httpd_t var_t:file {open read};





This document is something of a survival guide for anyone who is tasked with updating this file.




Development Environment

In order to work on the shibboleth.te file you need to ssh into a RHEL or CentOS box running Shibboleth (instructions are in the Shibboleth section of the Installation Guide) such as https://beta.dataverse.org or https://demo.dataverse.org that has all the commands below installed. As of this writing, the policycoreutils-python RPM was required.




Recreating the shibboleth.te File

If you’re reading this page because someone has reported that Shibboleth doesn’t work with SELinux anymore (due to an operating system upgrade, perhaps) you could start with the existing shibboleth.te file, but it is recommended that you create a new one instead to ensure that extra lines aren’t included that are no longer necessary.

The file you’re recreating is called a Type Enforcement (TE) file, and you can read more about it at https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/chap-Security-Enhanced_Linux-SELinux_Contexts.html

The following doc may or may not be helpful to orient you: https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Security-Enhanced_Linux/sect-Security-Enhanced_Linux-Fixing_Problems-Allowing_Access_audit2allow.html


Ensure that SELinux is Enforcing

If getenforce returns anything other than Enforcing, run setenforce Enforcing or otherwise configure SELinux by editing /etc/selinux/config and rebooting until SELinux is enforcing.




Removing the Existing shibboleth.te Rules

Use semodule -l | grep shibboleth to see if the shibboleth.te rules are already installed. Run semodule -r shibboleth to remove the module, if necessary. Now we’re at square one (no custom rules) and ready to generate a new shibboleth.te file.




Exercising SELinux denials

As of this writing, there are two optional components of Dataverse that are known not to work with SELinux out of the box with SELinux: Shibboleth and rApache.

We will be exercising SELinux denials with Shibboleth, and the SELinux-related issues are expected out the box:


	Problems with the dropdown of institutions being created on the Login Page (“Internal Error - Failed to download metadata from /Shibboleth.sso/DiscoFeed.”).


	Problems with the return trip after you’ve logged into HarvardKey or whatever (“shibsp::ListenerException” and “Cannot connect to shibd process, a site adminstrator should be notified.”).




In short, all you need to do is try to log in with Shibboleth and you’ll see problems associated with SELinux being enabled.




Stub out the new shibboleth.te file

Iterate on the new shibboleth.te file wherever you like, such as the root user’s home directory in the example below. Start by adding a module line like this:

echo 'module shibboleth 1.0;' > /root/shibboleth.te

Note that a version is required and perhaps it should be changed, but we’ll stick with 1.0 for now. The point is that the shibboleth.te file must begin with that “module” line or else the checkmodule command you’ll need to run later will fail. Your file should look like this:

module shibboleth 1.0;
# require lines go here
# allow lines go here








Iteratively Use audit2allow to Add Rules and Test Your Change

Now that shibboleth.te has been stubbed out, we will iteratively add lines to it from the output of piping SELinux Access Vector Cache (AVC) denial messages to audit2allow -r. These errors are found in /var/log/audit/audit.log so tail the file as you attempt to log in to Shibboleth.

# tail -f /var/log/audit/audit.log | fgrep type=AVC

You should see messages that look something like this:

type=AVC msg=audit(1476728970.378:271405): avc:  denied  { write } for  pid=28548 comm="httpd" name="shibd.sock" dev=dm-2 ino=393300 scontext=unconfined_u:system_r:httpd_t:s0 tcontext=unconfined_u:object_r:var_run_t:s0 tclass=sock_file

Next, pipe these message to audit2allow -r like this:

echo 'type=AVC msg=audit(1476728970.378:271405): avc:  denied  { write } for  pid=28548 comm="httpd" name="shibd.sock" dev=dm-2 ino=393300 scontext=unconfined_u:system_r:httpd_t:s0 tcontext=unconfined_u:object_r:var_run_t:s0 tclass=sock_file' | audit2allow -r

This will produce output like this:

require {
        type var_run_t;
        type httpd_t;
        class sock_file write;
}

#============= httpd_t ==============
allow httpd_t var_run_t:sock_file write;





Copy and paste this output into the shibboleth.te file you stubbed out above. Then, use the same checkmodule, semodule_package, and semodule commands documented in the Shibboleth section of the Installation Guide on your file to activate the SELinux rules you’re constructing.

Once your updated SELinux rules are in place, try logging in with Shibboleth again. You should see a different AVC error. Pipe that error into audit2allow -r as well and put the resulting content into the shibboleth.te file you’re constructing. As you do this, manually reformat the file using the following rules:


	Put the require block at the top.


	Within the require block, sort the lines.


	Put the allow lines at the bottom and sort them.


	Where possible, avoid duplicate lines by combining operations such as open and read into {open read}.


	Remove all comment lines.




Keep iterating until it works and then create a pull request based on your updated file. Good luck!

Many thanks to Bill Horka from IQSS for his assistance in explaining how to construct a SELinux Type Enforcement (TE) file!



Previous: Geospatial Data









          

      

      

    





  

    
      
          
            
  
Big Data Support

Big data support is highly experimental. Eventually this content will move to the Installation Guide.


Contents:


	Data Capture Module (DCM)


	Install a DCM


	Downloading rsync scripts via Dataverse API


	How a DCM reports checksum success or failure to Dataverse


	Steps to set up a DCM mock for Development


	Troubleshooting


	Steps to set up a DCM via Docker for Development


	Docker Image Set-up


	Optional steps for setting up the S3 Docker DCM Variant


	Using the DCM Docker Containers


	Additional DCM docker development tips










	Repository Storage Abstraction Layer (RSAL)


	Configuring the RSAL Mock


	Configuring download via rsync






	Workflows


	Administration


	Available Steps


	log


	pause


	http/sr














Various components need to be installed and configured for big data support.


Data Capture Module (DCM)

Data Capture Module (DCM) is an experimental component that allows users to upload large datasets via rsync over ssh.


Install a DCM

Installation instructions can be found at https://github.com/sbgrid/data-capture-module . Note that a shared filesystem (posix or AWS S3) between Dataverse and your DCM is required. You cannot use a DCM with Swift at this point in time.

Once you have installed a DCM, you will need to configure two database settings on the Dataverse side. These settings are documented in the Configuration section of the Installation Guide:


	:DataCaptureModuleUrl should be set to the URL of a DCM you installed.


	:UploadMethods should include dcm/rsync+ssh.




This will allow your Dataverse installation to communicate with your DCM, so that Dataverse can download rsync scripts for your users.




Downloading rsync scripts via Dataverse API

The rsync script can be downloaded from Dataverse via API using an authorized API token. In the curl example below, substitute $PERSISTENT_ID with a DOI or Handle:

curl -H "X-Dataverse-key: $API_TOKEN" $DV_BASE_URL/api/datasets/:persistentId/dataCaptureModule/rsync?persistentId=$PERSISTENT_ID




How a DCM reports checksum success or failure to Dataverse

Once the user uploads files to a DCM, that DCM will perform checksum validation and report to Dataverse the results of that validation. The DCM must be configured to pass the API token of a superuser. The implementation details, which are subject to change, are below.

The JSON that a DCM sends to Dataverse on successful checksum validation looks something like the contents of checksumValidationSuccess.json below:

{
  "status": "validation passed",
  "uploadFolder": "OS7O8Y",
  "totalSize": 72
}






	status - The valid strings to send are validation passed and validation failed.


	uploadFolder - This is the directory on disk where Dataverse should attempt to find the files that a DCM has moved into place. There should always be a files.sha file and a least one data file. files.sha is a manifest of all the data files and their checksums. The uploadFolder directory is inside the directory where data is stored for the dataset and may have the same name as the “identifier” of the persistent id (DOI or Handle). For example, you would send "uploadFolder": "DNXV2H" in the JSON file when the absolute path to this directory is /usr/local/glassfish4/glassfish/domains/domain1/files/10.5072/FK2/DNXV2H/DNXV2H.


	totalSize - Dataverse will use this value to represent the total size in bytes of all the files in the “package” that’s created. If 360 data files and one files.sha manifest file are in the uploadFolder, this value is the sum of the 360 data files.




Here’s the syntax for sending the JSON.

curl -H "X-Dataverse-key: $API_TOKEN" -X POST -H 'Content-type: application/json' --upload-file checksumValidationSuccess.json $DV_BASE_URL/api/datasets/:persistentId/dataCaptureModule/checksumValidation?persistentId=$PERSISTENT_ID




Steps to set up a DCM mock for Development

Install Flask.

Download and run the mock. You will be cloning the https://github.com/sbgrid/data-capture-module repo.


	git clone git://github.com/sbgrid/data-capture-module.git


	cd data-capture-module/api


	./dev_mock.sh




If you see an error about not having Flask installed, install it as explained below.

On Mac, you can install Flask with:


	mkvirtualenv mockdcm


	pip install -r requirements-mock.txt




On Ubuntu/Debian, you can install Flask with:


	sudo apt install python-pip (will install python as well)


	pip install flask




Once you have Flask installed, try running the dev mock script again:


	./dev_mock.sh




This should spin up the DCM mock on port 5000.

Add Dataverse settings to use mock (same as using DCM, noted above):


	curl http://localhost:8080/api/admin/settings/:DataCaptureModuleUrl -X PUT -d "http://localhost:5000"


	curl http://localhost:8080/api/admin/settings/:UploadMethods -X PUT -d "dcm/rsync+ssh"




At this point you should be able to download a placeholder rsync script. Dataverse is then waiting for news from the DCM about if checksum validation has succeeded or not. First, you have to put files in place, which is usually the job of the DCM. You should substitute “X1METO” for the “identifier” of the dataset you create. You must also use the proper path for where you store files in your dev environment.


	mkdir /usr/local/glassfish4/glassfish/domains/domain1/files/10.5072/FK2/X1METO


	mkdir /usr/local/glassfish4/glassfish/domains/domain1/files/10.5072/FK2/X1METO/X1METO


	cd /usr/local/glassfish4/glassfish/domains/domain1/files/10.5072/FK2/X1METO/X1METO


	echo "hello" > file1.txt


	shasum file1.txt > files.sha




Now the files are in place and you need to send JSON to Dataverse with a success or failure message as described above. Make a copy of doc/sphinx-guides/source/_static/installation/files/root/big-data-support/checksumValidationSuccess.json and put the identifier in place such as “X1METO” under “uploadFolder”). Then use curl as described above to send the JSON.




Troubleshooting

The following low level command should only be used when troubleshooting the “import” code a DCM uses but is documented here for completeness.

curl -H "X-Dataverse-key: $API_TOKEN" -X POST "$DV_BASE_URL/api/batch/jobs/import/datasets/files/$DATASET_DB_ID?uploadFolder=$UPLOAD_FOLDER&totalSize=$TOTAL_SIZE"




Steps to set up a DCM via Docker for Development

If you need a fully operating DCM client for development purposes, these steps will guide you to setting one up. This includes steps to set up the DCM on S3 variant.


Docker Image Set-up


	Install docker if you do not have it


	Follow these steps (extracted from docker-aio/readme.md & docker-dcm/readme.txt) :


	cd conf/docker-aio and run ./0prep_deps.sh to create Glassfish and Solr tarballs in conf/docker-aio/dv/deps.


	Run ./1prep.sh


	Build the docker image: docker build -t dv0 -f c7.dockerfile .


	cd ../docker-dcm and run ./0prep.sh


	Build dcm/dv0dcm images with docker-compose: docker-compose -f docker-compose.yml build


	Start containers: docker-compose -f docker-compose.yml up -d


	Wait for container to show “healthy” (aka - docker ps), then wait another 5 minutes (even though it shows healthy, glassfish is still standing itself up). Then run Dataverse app installation: docker exec -it dvsrv /opt/dv/install.bash


	Configure Dataverse application to use DCM (run from outside the container): docker exec -it dvsrv /opt/dv/configure_dcm.sh


	The Dataverse installation is accessible at http://localhost:8084.


	You may need to change the DoiProvider inside dvsrv (ezid does not work):


	curl -X DELETE -d EZID "localhost:8080/api/admin/settings/:DoiProvider"


	curl -X PUT -d DataCite "localhost:8080/api/admin/settings/:DoiProvider"


	Also change the doi.baseUrlString, doi.username, doi.password















Optional steps for setting up the S3 Docker DCM Variant


	Before: the default bucket for DCM to hold files in S3 is named test-dcm. It is coded into post_upload_s3.bash (line 30). Change to a different bucket if needed.


	Add AWS bucket info to dcmsrv


	You need a credentials files in ~/.aws


	mkdir ~/.aws


	yum install nano (or use a different editor below)


	nano ~/.aws/credentials and add these contents with your keys:


	[default]


	aws_access_key_id =


	aws_secret_access_key =














	Dataverse configuration (on dvsrv):


	Set S3 as the storage driver


	cd /opt/glassfish4/bin/


	./asadmin delete-jvm-options "\-Ddataverse.files.storage-driver-id=file"


	./asadmin create-jvm-options "\-Ddataverse.files.storage-driver-id=s3"






	Add AWS bucket info to Dataverse


	mkdir ~/.aws


	yum install nano (or use a different editor below)


	nano ~/.aws/credentials and add these contents with your keys:


	[default]


	aws_access_key_id =


	aws_secret_access_key =






	Also: nano ~/.aws/config to create a region file. Add these contents:


	[default]


	region = us-east-1










	Add the S3 bucket names to Dataverse


	S3 bucket for Dataverse


	/usr/local/glassfish4/glassfish/bin/asadmin create-jvm-options "-Ddataverse.files.s3-bucket-name=iqsstestdcmbucket"






	S3 bucket for DCM (as Dataverse needs to do the copy over)


	/usr/local/glassfish4/glassfish/bin/asadmin create-jvm-options "-Ddataverse.files.dcm-s3-bucket-name=test-dcm"










	Set download method to be HTTP, as DCM downloads through S3 are over this protocol curl -X PUT "http://localhost:8080/api/admin/settings/:DownloadMethods" -d "native/http"











Using the DCM Docker Containers

For using these commands, you will need to connect to the shell prompt inside various containers (e.g. docker exec -it dvsrv /bin/bash)


	Create a dataset and download rsync upload script


	Upload script to dcm_client (if needed, you can probably do all the actions for create/download inside dcm_client)


	docker cp ~/Downloads/upload-FK2_NN49YM.bash dcm_client:/tmp






	Create a folder of files to upload (files can be empty)


	Run script


	e.g. bash ./upload-FK2_NN49YM.bash






	Manually run post upload script on dcmsrv


	for posix implementation: bash ./opt/dcm/scn/post_upload.bash


	for S3 implementation: bash ./opt/dcm/scn/post_upload_s3.bash











Additional DCM docker development tips


	You can completely blow away all the docker images with these commands (including non DCM ones!)


	docker stop dvsrv


	docker stop dcm_client


	docker stop dcmsrv


	docker rm $(docker ps -a -q)


	docker rmi $(docker images -q)






	There are a few logs to tail


	dvsrv : tail -n 2000 -f /opt/glassfish4/glassfish/domains/domain1/logs/server.log


	dcmsrv : tail -n 2000 -f /var/log/lighttpd/breakage.log


	dcmsrv : tail -n 2000 -f /var/log/lighttpd/access.log






	Note that by default the docker container will stop running if the process it is following is turned off. For example flask with dcmsrv. You can get around this by having the script being followed never close (e.g. sleep infinity) https://stackoverflow.com/questions/31870222/how-can-i-keep-container-running-on-kubernetes


	You may have to restart the glassfish domain occasionally to deal with memory filling up. If deployment is getting reallllllly slow, its a good time.











Repository Storage Abstraction Layer (RSAL)


Configuring the RSAL Mock

Info for configuring the RSAL Mock: https://github.com/sbgrid/rsal/tree/master/mocks

Also, to configure Dataverse to use the new workflow you must do the following (see also the section below on workflows):


	Configure the RSAL URL:




curl -X PUT -d 'http://<myipaddr>:5050' http://localhost:8080/api/admin/settings/:RepositoryStorageAbstractionLayerUrl


	Update workflow json with correct URL information:




Edit internal-httpSR-workflow.json and replace url and rollbackUrl to be the url of your RSAL mock.


	Create the workflow:




curl http://localhost:8080/api/admin/workflows -X POST --data-binary @internal-httpSR-workflow.json -H "Content-type: application/json"


	List available workflows:




curl http://localhost:8080/api/admin/workflows


	Set the workflow (id) as the default workflow for the appropriate trigger:




curl http://localhost:8080/api/admin/workflows/default/PrePublishDataset -X PUT -d 2


	Check that the trigger has the appropriate default workflow set:




curl http://localhost:8080/api/admin/workflows/default/PrePublishDataset


	Add RSAL to whitelist


	When finished testing, unset the workflow:




curl -X DELETE http://localhost:8080/api/admin/workflows/default/PrePublishDataset




Configuring download via rsync

In order to see the rsync URLs, you must run this command:

curl -X PUT -d 'rsal/rsync' http://localhost:8080/api/admin/settings/:DownloadMethods

To specify replication sites that appear in rsync URLs:

Download add-storage-site.json and adjust it to meet your needs. The file should look something like this:

{
  "hostname": "dataverse.librascholar.edu",
  "name": "LibraScholar, USA",
  "primaryStorage": true,
  "transferProtocols": "rsync,posix,globus"
}





Then add the storage site using curl:

curl -H "Content-type:application/json" -X POST http://localhost:8080/api/admin/storageSites --upload-file add-storage-site.json

You make a storage site the primary site by passing “true”. Pass “false” to make it not the primary site. (id “1” in the example):

curl -X PUT -d true http://localhost:8080/api/admin/storageSites/1/primaryStorage

You can delete a storage site like this (id “1” in the example):

curl -X DELETE http://localhost:8080/api/admin/storageSites/1

You can view a single storage site like this: (id “1” in the example):

curl http://localhost:8080/api/admin/storageSites/1

You can view all storage site like this:

curl http://localhost:8080/api/admin/storageSites

In the GUI, this is called “Local Access”. It’s where you can compute on files on your cluster.

curl http://localhost:8080/api/admin/settings/:LocalDataAccessPath -X PUT -d "/programs/datagrid"






Workflows

Dataverse can perform two sequences of actions when datasets are published: one prior to publishing (marked by a PrePublishDataset trigger), and one after the publication has succeeded (PostPublishDataset). The pre-publish workflow is useful for having an external system prepare a dataset for being publicly accessed (a possibly lengthy activity that requires moving files around, uploading videos to a streaming server, etc.), or to start an approval process. A post-publish workflow might be used for sending notifications about the newly published dataset.

Workflow steps are created using step providers. Dataverse ships with an internal step provider that offers some basic functionality, and with the ability to load 3rd party step providers. This allows installations to implement functionality they need without changing the Dataverse source code.

Steps can be internal (say, writing some data to the log) or external. External steps involve Dataverse sending a request to an external system, and waiting for the system to reply. The wait period is arbitrary, and so allows the external system unbounded operation time. This is useful, e.g., for steps that require human intervension, such as manual approval of a dataset publication.

The external system reports the step result back to dataverse, by sending a HTTP POST command to api/workflows/{invocation-id}. The body of the request is passed to the paused step for further processing.

If a step in a workflow fails, Dataverse make an effort to roll back all the steps that preceeded it. Some actions, such as writing to the log, cannot be rolled back. If such an action has a public external effect (e.g. send an EMail to a mailing list) it is advisable to put it in the post-release workflow.


Tip

For invoking external systems using a REST api, Dataverse’s internal step
provider offers a step for sending and receiving customizable HTTP requests.
It’s called http/sr, and is detailed below.




Administration

A Dataverse instance stores a set of workflows in its database. Workflows can be managed using the api/admin/workflows/ endpoints of the Native API. Sample workflow files are available in scripts/api/data/workflows.

At the moment, defining a workflow for each trigger is done for the entire instance, using the endpoint api/admin/workflows/default/«trigger type».

In order to prevent unauthorized resuming of workflows, Dataverse maintains a “white list” of IP addresses from which resume requests are honored. This list is maintained using the /api/admin/workflows/ip-whitelist endpoint of the Native API. By default, Dataverse honors resume requests from localhost only (127.0.0.1;::1), so set-ups that use a single server work with no additional configuration.




Available Steps

Dataverse has an internal step provider, whose id is :internal. It offers the following steps:


log

A step that writes data about the current workflow invocation to the instance log. It also writes the messages in its parameters map.

{
   "provider":":internal",
   "stepType":"log",
   "parameters": {
       "aMessage": "message content",
       "anotherMessage": "message content, too"
   }
}








pause

A step that pauses the workflow. The workflow is paused until a POST request is sent to /api/workflows/{invocation-id}.

{
    "provider":":internal",
    "stepType":"pause"
}








http/sr

A step that sends a HTTP request to an external system, and then waits for a response. The response has to match a regular expression specified in the step parameters. The url, content type, and message body can use data from the workflow context, using a simple markup language. This step has specific parameters for rollback.

{
  "provider":":internal",
  "stepType":"http/sr",
  "parameters": {
      "url":"http://localhost:5050/dump/${invocationId}",
      "method":"POST",
      "contentType":"text/plain",
      "body":"START RELEASE ${dataset.id} as ${dataset.displayName}",
      "expectedResponse":"OK.*",
      "rollbackUrl":"http://localhost:5050/dump/${invocationId}",
      "rollbackMethod":"DELETE ${dataset.id}"
  }
}





Available variables are:


	invocationId


	dataset.id


	dataset.identifier


	dataset.globalId


	dataset.displayName


	dataset.citation


	minorVersion


	majorVersion


	releaseStatus














          

      

      

    





  

    
      
          
            
  
Style Guide

This style guide is meant to help developers implement clear and appropriate UI elements consistent with the Dataverse Project’s standards.

Contents:



	Foundations
	Grid Layout

	Typography

	Color Palette
	Brand Colors

	Text Colors

	Link Colors

	Contextual Classes





	Icons
	Bootstrap Glyphicons

	FontCustom Icon Font

	Socicon Icon Font





	Logos





	Patterns
	Navbar

	Breadcrumbs

	Tables

	Forms

	Buttons
	Action Buttons

	Form Buttons

	Icon-Only Buttons





	Pagination

	Labels

	Alerts

	Images

	Panels

	Tabs

	Modals













          

      

      

    





  

    
      
          
            
  
Foundations

Foundation elements are the very basic building blocks to create a page in Dataverse. Here we will outline how we’ve applied Bootstrap CSS to our UI, and how the CSS settings in our stylesheet mesh with it. Each section includes links to relevant parts of the official Bootstrap guides and other useful resources, where you can find more detailed documentation. We will also outline other UI resources like FontCustom and Socicon and how they are utilized.


Contents:


	Grid Layout


	Typography


	Color Palette


	Brand Colors


	Text Colors


	Link Colors


	Contextual Classes






	Icons


	Bootstrap Glyphicons


	FontCustom Icon Font


	Socicon Icon Font






	Logos







Grid Layout

Bootstrap [http://getbootstrap.com/css/#grid] provides a responsive, fluid, 12-column grid system that we use to organize our page layouts.

We use the fixed-width .container class which provides responsive widths (i.e. auto, 750px, 970px or 1170px) based on media queries for the page layout, with a series of rows and columns for the content.

The grid layout uses .col-sm-* classes for horizontal groups of columns, inside a containing element with a .row class. Content should be placed within columns, and only columns may be immediate children of rows.

<div class="container">
  <div class="row">
    <div class="col-sm-1">.col-sm-1</div>
    <div class="col-sm-1">.col-sm-1</div>
    <div class="col-sm-1">.col-sm-1</div>
    <div class="col-sm-1">.col-sm-1</div>
    <div class="col-sm-1">.col-sm-1</div>
    <div class="col-sm-1">.col-sm-1</div>
    <div class="col-sm-1">.col-sm-1</div>
    <div class="col-sm-1">.col-sm-1</div>
    <div class="col-sm-1">.col-sm-1</div>
    <div class="col-sm-1">.col-sm-1</div>
    <div class="col-sm-1">.col-sm-1</div>
    <div class="col-sm-1">.col-sm-1</div>
  </div>
  <div class="row">
    <div class="col-sm-8">.col-sm-8</div>
    <div class="col-sm-4">.col-sm-4</div>
  </div>
</div>








Typography

The typeface, text size, and line-height are set in the Bootstrap CSS [http://getbootstrap.com/css/#type]. We use Bootstrap’s global default font-size of 14px, with a line-height of 1.428, which is applied to the <body> and all paragraphs.

/* bootstrap.css */
body {
  font-family: "Helvetica Neue",Helvetica,Arial,sans-serif;
  font-size: 14px;
  line-height: 1.42857143;
}








Color Palette

The default color palette is set in the Bootstrap CSS [http://getbootstrap.com/css/#less-variables-colors]. It provides the background, border, text and link colors used across the application.


Brand Colors

Dataverse uses a particular color palette to help users quickly and easily identify the different types of objects: dataverses, datasets, and files.

We use our brand color, a custom burnt orange {color:#C55B28;}, which is set in our CSS stylesheet, “structure.css”. There is also a set of blue “dataset” classes and grey “file” classes, used to help identify those objects when searching and navigating the application.

/* structure.css */
.bg-dataverse {
  background:#C55B28;
}
.bg-dataset {
  background:#337AB7;
}
.bg-file {
  background:#F5F5F5;
}

#navbarFixed .navbar-brand {
  color: #C55B28;
}
#navbarFixed .icon-dataverse {
  color: #C55B28;
}






  
    
      

      

      

    

  


<div class="bg-dataverse">...</div>
<div class="bg-dataset">...</div>
<div class="bg-file">...</div>





/* structure.css */
.text-dataverse {
  color:#C55B28;
}
.text-dataset {
  color:#31708F;
}
.text-file {
  color:#F5F5F5;
}






  
    Lorem ipsum dolor sit amet, consectetur adipiscing elit.

    Lorem ipsum dolor sit amet, consectetur adipiscing elit.

    Lorem ipsum dolor sit amet, consectetur adipiscing elit.

  


<p class="text-dataverse">...</p>
<p class="text-dataset">...</p>
<p class="text-file">...</p>








Text Colors

Text color is the default setting from Bootstrap CSS [http://getbootstrap.com/css/#less-variables-scaffolding].

/* bootstrap.css */
body {
  color: #333;
}






  
    Lorem ipsum dolor sit amet, consectetur adipiscing elit.

  


<p>...</p>








Link Colors

Link color is the default setting from Bootstrap CSS [http://getbootstrap.com/css/#less-variables-links]. The hover state color is set to 15% darker.

Please note, there is a CSS override issue with the link color due to the use of both a Bootstrap stylesheet and a PrimeFaces stylesheet in the UI. We’ve added CSS such as .ui-widget-content a {color: #428BCA;} to our stylesheet to keep the link color consistent.

/* bootstrap.css */
a {
  color: #337AB7;
}
a:hover {
  color: #23527C;
}

/* structure.css */
.ui-widget-content a {
  color: #337AB7;
}
.ui-widget-content a:hover, .ui-widget-content a:focus {
  color: #23527C;
}






  
    
      

      

    

  


<a>...</a>








Contextual Classes

Contextual classes from Bootstrap CSS [http://getbootstrap.com/css/#helper-classes] can be used to style background and text colors. Semantic colors include various colors assigned to meaningful contextual values. We convey meaning through color with a handful of emphasis utility classes.


  
    
      

      

      

      

      

    

  


<div class="bg-primary">...</div>
<div class="bg-success">...</div>
<div class="bg-info">...</div>
<div class="bg-warning">...</div>
<div class="bg-danger">...</div>






  
    Lorem ipsum dolor sit amet, consectetur adipiscing elit.

    Lorem ipsum dolor sit amet, consectetur adipiscing elit.

    Lorem ipsum dolor sit amet, consectetur adipiscing elit.

    Lorem ipsum dolor sit amet, consectetur adipiscing elit.

    Lorem ipsum dolor sit amet, consectetur adipiscing elit.

    Lorem ipsum dolor sit amet, consectetur adipiscing elit.

  


<p class="text-muted">...</p>
<p class="text-primary">...</p>
<p class="text-success">...</p>
<p class="text-info">...</p>
<p class="text-warning">...</p>
<p class="text-danger">...</p>










Icons

We use various icons across the application, which we get from Bootstrap, FontCustom and Socicon. They appear in buttons, in message blocks or as default thumbnails for dataverses, datasets, and files.


Bootstrap Glyphicons

There are over 250 glyphs in font format from the Glyphicon Halflings set provided by Bootstrap [http://getbootstrap.com/components/#glyphicons]. We utilize these mainly as icons inside of buttons and in message blocks.


  



  


<span class="glyphicon glyphicon-search"></span>
<span class="glyphicon glyphicon-user"></span>
<span class="glyphicon glyphicon-lock"></span>








FontCustom Icon Font

With the use of FontCustom [https://github.com/FontCustom/fontcustom] we were able to generate our own custom icon webfonts. We use these in the search result cards to help distinguish between dataverse, dataset and file results.

   
     



     

   
<span class="icon-dataverse text-dataverse"></span>
<span class="icon-dataset text-dataset"></span>
<span class="icon-file text-file"></span>








Socicon Icon Font

We use Socicon [http://www.socicon.com] for our custom social icons. In the footer we use icons for Twitter and Github. In our Share feature, we also use custom social icons to allow users to select from a list of social media channels.

  
    



    

  
<span class="socicon socicon-github" title="Dataverse On GitHub"></span>
<span class="socicon socicon-twitter" title="Dataverse On Twitter"></span>
<span class="socicon socicon-facebook" title="Dataverse On Facebook"></span>










Logos

The Dataverse Project logo (below) is displayed in the footer, and was the basis for the creation of the application’s icons and favicon.

Create both print and web version of the Dataverse Project logo by downloading this vector-based SVG file: dataverse_project_logo.svg


  
    [image: Dataverse Project]
  
  
    
    Patterns
    

    
 
  

    
      
          
            
  
Patterns

Patterns are what emerge when using the foundation elements together with basic objects like buttons and alerts, more complex Javascript components from Bootstrap [http://getbootstrap.com/components/] like tooltips and dropdowns, and AJAX components from PrimeFaces [https://www.primefaces.org/showcase/] like datatables and commandlinks.


Contents:


	Navbar


	Breadcrumbs


	Tables


	Forms


	Buttons


	Action Buttons


	Form Buttons


	Icon-Only Buttons






	Pagination


	Labels


	Alerts


	Images


	Panels


	Tabs


	Modals







Navbar

The Navbar component [http://getbootstrap.com/components/#navbar] from Bootstrap spans the top of the application and contains the logo/branding, aligned to the left, plus search form and links, aligned to the right.

When logged in, the account name is a dropdown menu, linking the user to account-specific content and the log out link.


  

        
    
        
            
                 Dataverse
            
        

        
            
                	
                    
                        User Name 
                    
                    
                        	My Data
                        

                        	Notifications
                        

                        	Account Information
                        

                        	API Token
                        

                        	

                        	Log Out
                        

                    

                

            

        

    



  


<nav id="navbarFixed" class="navbar navbar-default navbar-fixed-top">
  <div class="container">
    <div class="navbar-header">
      <a href="#" onclick="return false;">
        <span class="navbar-brand"><i id="icon-dataverse" class="icon-dataverse"></i> Dataverse</span>
      </a>
    </div>
    <div class="collapse navbar-collapse" id="topNavBar">
      <ul class="nav navbar-nav navbar-right">
        <li>
          ...
        </li>
      </ul>
    </div>
  </div>
</nav>








Breadcrumbs

The breadcrumbs are displayed under the header, and provide a trail of links for users to navigate the hierarchy of containing objects, from file to dataset to dataverse. It utilizes a JSF repeat component [http://docs.oracle.com/javaee/6/javaserverfaces/2.0/docs/pdldocs/facelets/ui/repeat.html] to iterate through the breadcrumbs.


  

        
    
        Name of a Dataverse
    

     > 
    
        Name of Another Dataverse
    

     > 
    
        Title of Dataset
    




  


<div id="breadcrumbNavBlock" class="container" jsf:rendered="#{true}">
  <ui:repeat value="#{page.breadcrumbs}" var="breadcrumb" varStatus="status">
    <h:outputText value=" > " styleClass="breadcrumbCarrot" rendered="#{true}"/>
    <div class="breadcrumbBlock">
      ...
    </div>
  </ui:repeat>
</div>








Tables

Most tables use the DataTable components [https://www.primefaces.org/showcase/ui/data/datatable/basic.xhtml] from PrimeFaces and are styled using the Tables component [http://getbootstrap.com/css/#tables] from Bootstrap.


  
      
              
                      
                              
                                      
                                              	
  
    
    Index
    

    
 
  

    
      
          
            

Index



 




          

      

      

    





  

  
    
    Dataverse Guides Versions
    

    
 
  

    
      
          
            
  
Dataverse Guides Versions

This list provides a way to refer to previous versions of the Dataverse guides, which we still host. In order to learn more about the updates delivered from one version to another, visit the Releases [https://github.com/IQSS/dataverse/releases] page in our GitHub repo.


	4.10


	4.9.4


	4.9.3


	4.9.2


	4.9.1


	4.9


	4.8.6


	4.8.5


	4.8.4


	4.8.3


	4.8.2


	4.8.1


	4.8


	4.7.1


	4.7


	4.6.2


	4.6.1


	4.6


	4.5.1


	4.5


	4.4


	4.3.1


	4.3


	4.2.4


	4.2.3


	4.2.2


	4.2.1


	4.2


	4.1


	4.0.1


	4.0


	3.6.2








          

      

      

    





  

    
        Harvard Dataverse
        
        
        
        
        
        
        


        

        
        


        

        
        


        


        


        


        
    
    
        
            
            
                
                    
                         Dataverse
                    

                    
                        
                            	
                                 
                            

                        

                    

                

            

            
            
                
                    
                        [image: Harvard Dataverse]
                    

                    
                        Harvard Dataverse
                    

                    
                        A collaboration with Harvard Library, Harvard University IT, and IQSS
                    

                

            

        

        
            
                We apologize for the service interruption.

                The Harvard Dataverse is currently undergoing maintenance. At this time both the application and APIs are not able to be used. However, the datasets stored in the Harvard Dataverse are fine and not impacted by this maintenance.

                If you have any comments, questions or concerns, please reach out to support@dataverse.org.

            

        

        
            
                
                    Copyright © 2018

                

                
                    
                        Powered by 
                        [image: The Dataverse Project]
                    

                

            

        

    
_images/dv4.png
Assign Role

© Grant permissions to users and groups by assigning them a role.

UseriGroup *

x
Test Testerson @testerson
Role * permissions associated with the selected

_ Contributor
" Curator

_ Dataset Creator

_ Dataverse + Dataset Creator
_ Dataverse Creator

_ File Downloader

_ Member






_images/dv5.png
Assign Role

© Grant permissions to users and groups by assigning them a role.

UseriGroup *  Test Testerson

Role*  _ Admin
® Contributor
" curator
. Dataset Creator
. Dataverse + Dataset Creator
. Dataverse Creator
_ File Downloader

_ Member

Save Changes

These are the permissions associated with the selected
role.

Contributor
Viewrpublishedbataset | DownioadFie | ExiDataset






_images/dv2.png
% Dataverse [ Q  Apout  Support~  Contact & Dataverse Admin v

Harvard Dataverse A collaboration with Harvard Library, Harvard University IT, and IQSS

Harvard Dataverse - Permissions

Permissions A

Here is the current access configuration to your dataverse. & Edit Access

Who can add to this dataverse?

Anyone adding to this dataverse needs to be given access.

What should be the default role for someone adding datasets to this dataverse?
Contributor - Edit metadata, upload files, and edit files, edit Terms, Guestbook, Submit datasets for review

Users/Groups A
Here are all the users and groups that have access to your dataverse. © cCreate Group & Assign Roles to Users/Groups
User/Group Name (Affiliation) D Role Action
Dataverse Admin (Dataverse org) @admin Admin X Remove Assigned Role

Roles v





_images/dv3.png
Edit Access

Who can add to this dataverse?

(@ Anyone adding to this dataverse needs to be given access.

_ Anyone with a Dataverse account can add sub dataverses

Anyone with a Dataverse account can add datasets

Anyone with a Dataverse account can add sub dataverses and datasets

What should be the default role for someone adding datasets to this dataverse?

® Contributor - Edit metadata, upload files, and edit files, edit Terms, Guestbook, Submit datasets for review

_ Curator - Edit metadata, upload files, and edit files, edit Terms, Guestbook, File Restrictions (Files Access + Use), Edit Permissions/Assign
Roles + Publish

Save Changes Ccancel






_images/geoconnect-tabular-2.png
Darwin's Finches 23

Finch, Fiona, 2016, *Darwin's Finches®, d
UNF:6:zmJly2WbiMG5jxUzWuJang== @

Description

Subject

Files = Metadata = Terms | Ver

1File

election_precinct:

R x
Edit Tags
@ Select existing file tags or create new tags to describe your files. Each file can have
more than one tag.
Selected Tags [ Geospatiai |
File Tags Select... -

Custom File Tag

Tabular Data Tags

Delete Tags

Save Changes.

Cancel

Creating a new tag will add it as a tag option for all files in
this dataset.

Add new file tag... Apply

Select a tag to describe the type(s) of data this is (survey,
time series, geospatial, etc).

Select... -

]

Survey
Time Series
Panel
Event
Genomics
Network

¥ Geospatial

Gite Data ~

Data Citation Standards.

of passerine birds.

M # Edit Files +

&, Download ~






_images/geoconnect-tabular-3.png
+ Upload Files # EditFiles

election_precincts.tab
Tabular Data - 1.0 KB - Nov 29, 2016 - 0 Downloads
13 Variables, 9 Observations - UNF:6:zmJly2WbiMGSjxUzWudan

Q Map Data &, Download +






_images/dvperms1.png
% Dataverse Q  About  Support - Contact & Dataverse Admin KX}

3 1
Harvard Dataverse
g
x e |sen-
The root dataverse. Harvard Dataverse
harvard
Search this dataverse. Q Find | Advanced Search
General Information
Theme + Widgets
2 % Dataverses (30) 1010 of 92 results it sot~ Bermissions
(v E patasets (62) Dataset Templates
[ Fies (308) 100 files, 100 smiles. Dataset Guestbooks
D Apr1,2015
Publication Status % B . Featured Dataverses
Published (43) Admin, Dataverse, 2015, "100 files, 100 smiles", hitp://dx 01 0FQ/ 100U T2/ /T FIUEZ PVt DaVErSe; VI
Unpublished (37) 100 files, 100 smiles
Draft (34)
Dataverse Category ROOIRE) ‘:““:'gle‘zm 2
Researcher (14) % &b
Research Project (10) Admin, Dataverse, 2015, "100 files, 100 smiles", hitp://dx doi.0rg/10.5072/FK2/BTHULZ, Harvard Dataverse, DRAFT
Journal (3) VERSION

Organization or Institution (1)

Teaching Course (1) LTS

[

More... [ 000000 files oooooo [ ETEEEE]

Affiliation Apr 1, 2015 - Test Weird Search Issue Dataverse






_images/geoconnect-tabular-1.png
1File + Upload Files # EditFiles

's - UNF:6:zmJly2WbiMGSixUzWuJang==

election_precincts.tab
EFF| Tabular Data - 1.0KB - Nov 29, 2016 - 0 Downloads &, Download +

Kivanab\ew
after being saved, Dataverse identifies this file as "Tabular Data"






_images/geoconnect-tabular-4.png
Geoconnect: Map Data Set Up

election_precincts.tab
Doe, John, 2017,"2010 Census Tract- MA',doi-10.5072/FK2/VZ1ZX9, DVN-Build 2 Dafaverse, V2, UNF8:27latwST7nTb4dBOAAVmAW==

Preview Data File

Preview of your Dataverse file

© Here s a preview of the first few rows of your data file for reference when selecting the columns which contain geospatial data

Displaying 5 of 13 rows

Row# 4 animal election_precinct_int election_precinct_double neighborhood police_district_id public_works_id tiger_line_id road_left_size
1 Dog 10 EastBoston 1 206 85720227 205871733
2 Squirrel 30 Charlestown 2 1-09 85609791 205871735
3 Antelope 40 SoumBostn | 3 1A w2376 | 205871263
4 Zetra 50 Bron 4 18 85605847 25627015
5 Lion 70 Rosiindale 5 204 637089786 | 257444575
Map Data File

© Select the type of geospatial data contained in your data file, and the column(s) in which it can be found.

Geospatial Data

Cancel

Type
Select.

v <: Pick a Geospatial Data type






_images/geoconnect-tabular-5.png
Map Data File

© Select the type of geospatial data contained in your data file, and the column(s) in which it can be found.

Geospatial Data Type

Select v

Select
Latitude/Longitude

Boston. Administrative Geography
US Census Block

US Census Block Group

US Census Tract

US Zip Code

cancel List of Geospatial Data types






_images/geoconnect-tabular-6.png
Map Data File

© Select the type of geospatial data contained in your data file, and the column(s) in which it can be found.

Geospatial Data Type

Boston, Administrative Geography

Cancel Choose a column from
your tabular data file

Developed atthe Institute for Quantitative Social Science | Dataverse Projecton ¥ | Code available at ¥

Copyright©2017, The President & Fellows of Harvard College

Column Name

Select v

Select
animal
election_precinct_int
election_precinct_double
neighborhood
police_district_id
tiger_line_id

road_left_size

road_right_size
ge0id10_census_tract
bg_id_10_census_block_group
census_block_fips15

2ip5

2017 144453






nav.xhtml

    
      Table of Contents


      
        		
          Dataverse 4.10 Guides
        


        		
          User Guide
          
            		
              Account Creation + Management
            


            		
              Finding and Using Data
            


            		
              Dataverse Management
            


            		
              Dataset + File Management
            


            		
              Tabular Data File Ingest
              
                		
                  Supported File Formats
                


                		
                  Tabular Data, Representation, Storage and Ingest
                


                		
                  SPSS
                


                		
                  Stata
                


                		
                  R Data Format
                


                		
                  Excel
                


                		
                  CSV/TSV
                


              


            


            		
              Data Exploration Guide
              
                		
                  TwoRavens: Tabular Data Exploration
                


                		
                  WorldMap: Geospatial Data Exploration
                


              


            


            		
              Appendix
            


          


        


        		
          Admin Guide
          
            		
              Dashboard
            


            		
              Managing Harvesting Clients
            


            		
              Managing Harvesting Server and Sets
            


            		
              Metadata Customization
            


            		
              Metadata Export
            


            		
              Dataverse Application Timers
            


            		
              Integrations
            


            		
              Geoconnect and WorldMap
            


            		
              User Administration
            


            		
              Managing Datasets and Dataverses
            


            		
              Solr Search Index
            


            		
              IP Groups
            


            		
              Monitoring
            


            		
              Reporting Tools
            


            		
              Maintenance
            


            		
              Backups
            


            		
              Troubleshooting
            


          


        


        		
          API Guide
          
            		
              Introduction
            


            		
              SWORD API
            


            		
              Search API
            


            		
              Data Access API
            


            		
              Native API
            


            		
              Metrics API
            


            		
              Client Libraries
            


            		
              Apps
            


          


        


        		
          Installation Guide
          
            		
              Introduction
            


            		
              Preparation
            


            		
              Prerequisites
            


            		
              Installation
            


            		
              Configuration
            


            		
              Upgrading
            


            		
              TwoRavens
            


            		
              Geoconnect
            


            		
              Shibboleth
            


            		
              OAuth Login: ORCID, GitHub, Google
            


            		
              External Tools
            


            		
              Advanced Installation
            


          


        


        		
          Developer Guide
          
            		
              Introduction
            


            		
              Development Environment
            


            		
              Windows Development
            


            		
              Tips
            


            		
              Troubleshooting
            


            		
              Version Control
            


            		
              SQL Upgrade Scripts
            


            		
              Testing
            


            		
              Documentation
            


            		
              Dependency Management
            


            		
              Debugging
            


            		
              Coding Style
            


            		
              Deployment
            


            		
              Docker, Kubernetes, and OpenShift
            


            		
              Making Releases
            


            		
              Tools
            


            		
              Universal Numerical Fingerprint (UNF)
              
                		
                  UNF Version 3
                


                		
                  UNF Version 5
                


                		
                  UNF Version 6
                


              


            


            		
              Shibboleth and OAuth
            


            		
              Geospatial Data
            


            		
              SELinux
            


            		
              Big Data Support
            


          


        


        		
          Style Guide
          
            		
              Foundations
            


            		
              Patterns
            


          


        


      


    
  

_images/geoconnect-tabular-9.png
 Success!

Map added to WoridMap. View on WorldMap.

A Waming! — There were some issues. The map below was created from your tabular file.
+ Join Column: public_works_id
+ Rows Matched: 8
+ Rows NOT Matched: 5 (View Map Metadata to see the unmatched rows)

Save this map and return to Dataverse. You
can come back and make further edits to the

Gmap later if you like.

4 Return fo the Dataverse View Map Metadata

Manage Map

Style Map

Any errors are displayed here, but the
map can still be styled and used.

<3

4 View on WorldMap & Download v = X Delete

I

Lexington

i BN AT ]
B 2
ey G ey A 4 sonfidsd
Goagleua,: R FINRP (B S =

@ Ciick the "Apply Changes" button to apply your
edits to WorldMap.

Attribute
Select.. v

Classification Method
Select.. v

Intervals
5

Colors
Select.. v

Apply Changes.

Legend

Use these options to
style your map.

5 © Weymouth

1:272089 |~V

. Centerfor Geogpaptic Avalyss L

Map data €2017 Google Tems of Use Reportamap eror






_images/graphviz-5cc5d532e5e3171d0c32a75f327c290bfb5f9808.png





_images/geoconnect-tabular-7.png
Map Data File

© Select the type of geospatial data contained in your data file, and the column(s) in which it can be found.

Geospatial Data

Type

Boston, Administrative Geography

@ select the WorldMap layer to map your geospatial data onto.

WorldMap Layer

‘Submit Data to WorldMap.

Developed atthe Instite for Quanti

Copyright 2017, The President & F|

Name

Select

Select
2015 - Addresses, Boston

2015 - BRA Neighborhood Statistical Areas, Boston
2015 - BRA Planning Districts, Boston

2015 - Election Precincts, Boston

2015 - Election Wards, Boston

2015 - Fire Districts, Boston

2015 - Intersections (Census), Boston

2015 - Intersections (City), Boston

2015 - 1SD Neighborhoods (Permits), Boston

2015 - Police Districts, Boston

2015 - Public Works Districts, Boston

2015 - Roads, Boston

2015 - Roads (left side). Boston

2015 - Roads (right side), Boston

Column Name

public_works_id

Description
This s a brief description about the layer.

WorldMap layers available for the
selected Geospatial Data Type:
"Boston, Administrative Geography"

April 24th, 2017 14:53:40






_images/geoconnect-tabular-8.png
Map Data File

© Select the type of geospatial data contained in your data file, and the column(s) in which it can be found.

Geospatial Data Type

Boston, Administrative Geography

@ select the WorldMap layer to map your geospatial data onto.

WorldMap Layer Name
Submit information and

. 2015 - Public Works Districts, Boston
wait for it to process.

s may take 45 seconds Cancel

Column Name

public_works_id v

Description

Boston, Administrative Geography, Boston Public Works District ID. Examples: 2-06",
108", -1A", 118"






_images/prov1.png
Provenance

Provenance is a record of the origin of your data file and any transformations it has been
through. Upload a JSON file from a provenance capture tool to generate a graph of your
data's provenance. For more information, please refer to our User Guide.

Provenance File File must be JSON format and follow W3C standards.

+ Select Fi

‘You may also add information documenting the history of your data file including how it
was created, how it has changed, and who has worked with it

Provenance Add provenance description.
Description
SaveChanges  Cancel

T ————





_images/tworavens_components.png





_images/graphviz-d54e691e8c2637a2f79ae13ed866e38aababfacd.png
Transitive Dependency TA
Transitive Dependency TB

Dircct/Transitive Dependency Z

Dircet Dependency A

Direet Dependency B

Transitive Dependency TC






_images/prov0.png
# Edit~

File Name | 50by1000.tab

Tab-Delimted -
MDS: c032121916707128711e7210633d8b7; ‘ # Edit
Deseription | zqq fle description
5> provenance
Restrict
Unrestrict
Tags

Delete





_images/tworavens_test_empty.png
>
n

d.hmdc.harvard.edu/dataexplore/ gui.htmi?dfd=28893798] ' Q search

1 }k Dataset Name [¢] Estimate
woRavens

Data Selection 2 u

Variables

Subset






_images/tworavens_test_file_ingested.png
50by1000.tab
Tabulr Data - 102.5 KB - Mar 8, 2017 -0

Downloads % Explore & Download ~
50 Variables, 1000 Observations -

UNF:6:x10r+Q9EKBaF/BMiveKzGw==





_images/tworavens_test_init.png
@)@ﬁ nttps: /dvn-build.hmdc.harvard. edu/dataexplore/gui.hmizdfid=2889379. | € | (Q search PRl =l L
4 g 50by1000 Variable transfon c Estimate
woRavens
Data Selection ol Model Selection
Variables  Subset Models SetCo Results
vt s
T — ot
T : oot
vars poisson
vard normal
var? gamma
vars negbinom






_images/tworavens_test_select_var.png





_images/unf-diagram.png
HOOOKRFEORMKR

©CUNWOoON©ON N

H OGN AENNNN A

21
91
2

12
52
23
91
91
ir2

91

121!
212!
104
321
204
311,
92
212
91
104

212!

Apply a cryptographic algorithm

Solely based on semantic contents
of the digital object:

« data changes result in new
UNF

« format or location changes
retain original UNF

Final alphanumeric string:

« uniguely summarizes the
contents,

* but does not convey its
information

ZNQRI14053UZq389x0Bffg?==






_images/tworavens_test_output.png
Variable transformation C Estimate

Model1

Model Selection
Models Set Covar. Results
Estimate SE tvalue  Pri<lt)

(intercept) 6.38e-14 2.22e-15  28.8 4.92e-133
var3  1.00 357e-16 2.80e+15 0.00

Formula: Is( var1 ~ var3)






_images/tworavens_test_select_model.png
Variable transfo C Estimate

Model Description

2 |
Least Squares Regression for

Continuous Dependent Variables





_static/comment-bright.png





_static/comment-close.png





_static/ajax-loader.gif





_static/comment.png





_static/file.png





_static/down-pressed.png





_static/down.png





_static/logo.png
The

Dataverse

Project





_static/minus.png





_static/plus.png





_static/up-pressed.png





_static/up.png






_images/data_publishing_version_workflow.png
Upload

™
)

1
o]

Publish Version1 == = == « = ;:tbli:thet:
aset v

Authors, Title, Year, DOI, Repository, V1

Published
~'=- > Dataset

viil

_ T PUinShed
Dataset v2

Authors, Title, Year, DOI, Repository, UNF, V2

Publish Version 1.1: small metadata
change; citation doesn’t change.





_images/dataverse-icon.jpg





_images/Dataverse-Diagram.png
Schematic Diagram of a Dataverse in Dataverse 4.0

Dataset #1
ataset #2
Dataverse*
Dataverse

Container for your Datasets and/or Dataverses*

* Dataverses can now contain other Dataverses (this replaces Collections & Subnetworks)





_images/data-download.png
Files ~ Metadata  License+Terms  Versions

& Download ~

ug-cdbk-ques-drone.pdf
* Adobe PDF - 2.6 MB - Mar 18, 2015
MDS: b491cobf5d83a5be2bad6e5264358051; & Download
User Guide, Codebook

Drones-UK.tab
Tabular Data - 230.6 KB - Mar 18, 2015
Original File MDS: 8f7dec1f283209a50486a528838c0275;

S 67 Variabes, 2008 Obsenvtions - NF:691TzQZCohowmZTs 1NeZ8== ey B
UK dataset
o] Al File Formats + I